首页> 外文期刊>IEEE Transactions on Automatic Control >Constrained Adaptive Model-Predictive Control for a Class of Discrete-Time Linear Systems With Parametric Uncertainties
【24h】

Constrained Adaptive Model-Predictive Control for a Class of Discrete-Time Linear Systems With Parametric Uncertainties

机译:具有参数不确定性的一类离散时间线性系统的约束适应性模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

In this technical note, an adaptive model-predictive control (MPC) is proposed for a class of discrete-time linear systems with constant parametric uncertainties and control constraint. The proposed adaptive MPC originates from the principle of min-max optimization, which cannot be solved in a direct numerical way. An adaptive strategy is proposed to estimate the uncertain parameters, such that the estimated error converges, and the optimization in the MPC can be transferred into a solvable simple structure. Feasibility of the optimization and stability of the closed-loop system are proved theoretically, and a simulation example is presented to illustrate the theoretical result.
机译:在本技术说明中,提出了一种具有恒定参数不确定性和控制约束的一类离散时间线性系统的自适应模型预测控制(MPC)。所提出的自适应MPC起源于最小最大优化的原理,这不能以直接数值方式解决。提出了一种自适应策略来估计不确定的参数,使得估计的误差会聚,并且MPC中的优化可以转移到可解变的简单结构中。理论上证明了闭环系统的优化和稳定性的可行性,并提出了模拟示例以说明理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号