首页> 外文期刊>Applied Mathematical Modelling >Kinematics of coupler curves for spherical four-bar linkages based on new spherical adjoint approach
【24h】

Kinematics of coupler curves for spherical four-bar linkages based on new spherical adjoint approach

机译:基于新的球面伴随方法的球面四连杆机构耦合器运动学

获取原文
获取原文并翻译 | 示例

摘要

The local and global geometric properties of spherical coupler curves constitute spherical kinematics of spherical four-bar linkages, which can be adopted to reveal distribution characteristics of spherical coupler curves. New unified spherical adjoint approach is established in the paper to study both the local and global geometric properties in order to enrich the atlas of spherical coupler curves with geometric characteristics. Since the constraint curve of spherical four-bar linkage is a simple spherical circle and the spherical centrodes imply intrinsic properties of spherical motion of the coupler link, they are in their turn taken as the original curves in spherical adjoint approach to derive the geodesic curvature and analyze the local geometric characteristics of the spherical coupler curves. The conditions for different spherical double points, such as spherical crunodes, tacnodes and cusps of the spherical coupler curve are derived through the spherical adjoint approach. The spherical surface of the coupler link can be divided into several areas by the spherical moving centrode and the spherical tacnode's tracer curve. The points in each area trace spherical coupler curves with a specific shape. The characteristic points, which trace spherical coupler curves with cusp, geodesic inflection point, spherical Ball point, spherical Burmester point, crunode and tacnode can be readily located in the coupler link by the modelling procedure and the derived condition equations. In the end the distribution of spherical coupler curves with both local and global characteristics is elaborated. The research proposes systematic geometric properties of spherical coupler curves based on the new established approach, and provides a solid theoretical basis for the kinematic analysis and synthesis of the spherical four-bar linkages.
机译:球形耦合器曲线的局部和整体几何特性构成了球形四连杆机构的球形运动学,可以用来揭示球形耦合器曲线的分布特征。本文建立了一种新的统一球面伴随方法,以研究局部和全局几何特性,以丰富具有几何特征的球面耦合曲线图集。由于球形四连杆机构的约束曲线是一个简单的球形圆,并且球形中心表示耦合器连杆的球形运动的固有特性,因此将它们依次用作球形伴随方法中的原始曲线,以得出测地曲率和分析球形耦合器曲线的局部几何特征。通过球面伴随法推导了不同的球面双点的条件,例如球面交点曲线的交点,交点和尖点。耦合器链节的球形表面可以通过球形运动中心和球形尾针的示踪曲线分为几个区域。每个区域中的点描绘具有特定形状的球形耦合器曲线。通过建模过程和导出的条件方程式,可以轻松地在耦合器链接中找到特征点,这些特征点可以跟踪具有尖点的球形耦合器曲线,测地拐点,球形球形点,球形Burmester点,克鲁索和塔形节点。最后,阐述了具有局部和整体特征的球形耦合器曲线的分布。该研究基于新建立的方法提出了球形耦合器曲线的系统几何特性,并为球形四连杆机构的运动学分析和综合提供了坚实的理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号