首页> 外文期刊>ACM transactions on intelligent systems >Fuzzy Cognitive Diagnosis for Modelling Examinee Performance
【24h】

Fuzzy Cognitive Diagnosis for Modelling Examinee Performance

机译:考生绩效建模的模糊认知诊断

获取原文
获取原文并翻译 | 示例

摘要

Recent decades have witnessed the rapid growth of educational data mining (EDM), which aims at automatically extracting valuable information from large repositories of data generated by or related to people's learning activities in educational settings. One of the key EDM tasks is cognitive modelling with examination data, and cognitive modelling tries to profile examinees by discovering their latent knowledge state and cognitive level (e.g. the proficiency of specific skills). However, to the best of our knowledge, the problem of extracting information from both objective and subjective examination problems to achieve more precise and interpretable cognitive analysis remains underexplored. To this end, we propose a fuzzy cognitive diagnosis framework (FuzzyCDF) for examinees' cognitive modelling with both objective and subjective problems. Specifically, to handle the partially correct responses on subjective problems, we first fuzzify the skill proficiency of examinees. Then we combine fuzzy set theory and educational hypotheses to model the examinees' mastery on the problems based on their skill proficiency. Finally, we simulate the generation of examination score on each problem by considering slip and guess factors. In this way, the whole diagnosis framework is built. For further comprehensive verification, we apply our FuzzyCDF to three classical cognitive assessment tasks, i.e., predicting examinee performance, slip and guess detection, and cognitive diagnosis visualization. Extensive experiments on three real-world datasets for these assessment tasks prove that FuzzyCDF can reveal the knowledge states and cognitive level of the examinees effectively and interpretatively.
机译:最近几十年见证了教育数据挖掘(EDM)的快速增长,其目的是从由人们在教育环境中的学习活动生成的或与之相关的大量数据中自动提取有价值的信息。 EDM的一项重要任务是使用考试数据进行认知建模,而认知建模则试图通过发现被测者的潜在知识状态和认知水平(例如,特定技能的熟练程度)来对他们进行描述。然而,就我们所知,从客观和主观考试问题中提取信息以实现更精确和可解释的认知分析的问题仍未得到探讨。为此,我们提出了一种模糊认知诊断框架(FuzzyCDF),用于针对具有客观和主观问题的考生进行认知建模。具体来说,为了处理对主观问题的部分正确答案,我们首先模糊了考生的技能水平。然后,我们结合模糊集理论和教育假设,根据考生的技能水平对考生对问题的掌握程度进行建模。最后,我们通过考虑滑移和猜测因素来模拟每个问题的考试成绩的生成。这样,便建立了整个诊断框架。为了进一步进行全面验证,我们将FuzzyCDF应用于三个经典的认知评估任务,即预测考生表现,滑倒和猜测检测以及认知诊断可视化。对这些评估任务在三个真实世界的数据集上进行的大量实验证明,FuzzyCDF可以有效且解释性地揭示考生的知识状态和认知水平。

著录项

  • 来源
    《ACM transactions on intelligent systems》 |2018年第4期|296-321|共26页
  • 作者单位

    Univ Sci & Technol China, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei, Anhui, Peoples R China;

    Univ Sci & Technol China, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei, Anhui, Peoples R China;

    Univ Sci & Technol China, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei, Anhui, Peoples R China;

    Univ Technol, Adv Analyt Inst, Sydney, NSW, Australia;

    Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China;

    IFLYTEK Co Ltd, Hefei, Anhui, Peoples R China;

    IFLYTEK Co Ltd, Hefei, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cognitive; graphic model; educational data mining;

    机译:认知;图形模型;教育数据挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号