首页> 中文期刊> 《常州工学院学报》 >一种基于上下文信息的个性化推荐模型

一种基于上下文信息的个性化推荐模型

     

摘要

The incredible growth of information on the Internet is giving more choices but at the same time creating one of the biggest challenges of the Internet,that is,the efficient processing of this growing volume of in-formation.Recently recommender systems have emerged to help users overcome the exponentially growing infor-mation overload problem.In order to form user profiles and improve efficiency of personalized recommendation, an new idea is exploring new data sources such as context information which is one useful data source.This paper has presented a novel approach for mining the contextual information from unstructured text and uses it to produce context-aware recommendations.This method is used to mine hidden contextual information from customers′re-views of hotels dataset and the results indicate that using the contextual information can improve the performance of the recommender system in term of hit ratio.%个性化推荐为解决互联网信息过载问题提供了新的思路。为有效地构建用户模型和改进个性化推荐的效果,提出了一种挖掘非结构化文本中上下文信息的新模型,将得到的上下文信息嵌入用户模型信息中,丰富了用户模型。实验结果表明,该模型应用于客户对旅馆评论的上下文数据中,能够大大改善推荐的性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号