首页> 美国卫生研究院文献>BMC Genomics >BPLT+: A Bayesian-based personalized recommendation model for health care
【2h】

BPLT+: A Bayesian-based personalized recommendation model for health care

机译:BPLT +:基于贝叶斯的医疗保健个性化推荐模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose an Advanced Bayesian-based Personalized Laboratory Tests recommendation (BPLT+) model. Given a patient, we estimate whether a new laboratory test should belong to a "taken" or "not-taken" class. We use the bayesian method to build a weighting function for a laboratory test and the given patient. A higher weight represents that the laboratory test has a higher probability of being "taken" by the patient and lower probability of being "not-taken" by the patient. For the sake of effectiveness and robustness, we further integrate several modified smoothing techniques into the model. In order to evaluate BPLT+ model objectively, we propose a framework where the data set is randomly split into a training set, a validation input set and a validation label set. A training matrix is generated from the training data set. Then instead of accessing the training data set repeatedly, we utilize this training matrix to predict the laboratory test on the validation input set. Finally, the recommended ranking list is compared with the validation label set using our proposed metric CorrectRateM. We conduct experiments on real medical data, and the experimental results show the effectiveness of the proposed BPLT+ model.
机译:在本文中,我们提出了一个基于高级贝叶斯的个性化实验室测试推荐(BPLT + )模型。对于患者,我们估计新的实验室检查应属于“通过”还是“不通过”类别。我们使用贝叶斯方法为实验室测试和给定的患者建立加权函数。较高的权重表示实验室测试被患者“接受”的可能性较高,而患者被“不接受”的可能性较低。为了提高有效性和鲁棒性,我们将几种改进的平滑技术进一步集成到模型中。为了客观地评估BPLT + 模型,我们提出了一个框架,在该框架中,数据集随机分为训练集,验证输入集和验证标签集。从训练数据集生成训练矩阵。然后,我们无需重复访问训练数据集,而是利用此训练矩阵来预测验证输入集上的实验室测试。最后,使用我们建议的指标CorrectRateM将推荐的排名列表与验证标签集进行比较。我们对真实的医学数据进行了实验,实验结果证明了所提出的BPLT + 模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号