首页> 外文学位 >Methods of association for genome data with rare variants and a multinomial response.
【24h】

Methods of association for genome data with rare variants and a multinomial response.

机译:具有罕见变体和多项式响应的基因组数据的关联方法。

获取原文
获取原文并翻译 | 示例

摘要

A rare variant is a Single Nucleotide Polymorphism (SNP) with a minor allele frequency (MAF) of 5% or less. Approximately 60% of human SNPs are rare variants. New rapid genotyping technologies now make it possible to efficiently survey these rare variants. Many new statistical methods are being developed to analyze the associations between rare variants and phenotypes. Current methods have focused on dichotomous phenotypes such as case/control status or quantitative phenotypes such as weight or cholesterol level. Rare variant association methods for multinomial phenotypes, or categorical outcomes with more than two possibilities, have not been adequately addressed. The purpose of this study is to develop new methods of rare variant association analysis for a multinomial phenotype. Several new methods are proposed and evaluated using simulations. Simulations showed that two of the proposed methods are viable for rare variant association analysis with multinomial phenotypes. These methods have the correct or conservative Type I error rate and reasonable power for large samples with a moderate heritability. The viable methods are applied to resequencing data from the Dallas Heart Study. One of the methods detected an association between a categorized plasma triglyceride level and the ANGPTL3 and ANGPTL4 genes.
机译:罕见的变体是单核苷酸多态性(SNP),次要等位基因频率(MAF)为5%或更小。大约60%的人类SNP是稀有变异。现在,新的快速基因分型技术使有效调查这些稀有变异成为可能。正在开发许多新的统计方法来分析稀有变体和表型之间的关联。当前的方法集中于二分表型,例如病例/对照状态或定量表型,例如体重或胆固醇水平。尚未充分解决针对多项表型或具有两种以上可能性的分类结果的罕见变体关联方法。本研究的目的是为多项式表型开发稀有变异关联分析的新方法。提出了几种新方法,并通过仿真进行了评估。仿真表明,所提出的两种方法对于具有多项式表型的稀有变异关联分析是可行的。对于具有中等遗传力的大样本,这些方法具有正确或保守的I型错误率和合理的功效。可行的方法适用于对达拉斯心脏研究的数据进行重测序。其中一种方法检测到血浆甘油三酸酯水平与ANGPTL3和ANGPTL4基因之间的关联。

著录项

  • 作者

    Nicholson, Janae Elizabeth.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Statistics.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号