首页> 外文学位 >Modeling team performance for coordination configurations of large multi-agent teams using stochastic neural networks.
【24h】

Modeling team performance for coordination configurations of large multi-agent teams using stochastic neural networks.

机译:使用随机神经网络为大型多主体团队的协调配置建模团队绩效。

获取原文
获取原文并翻译 | 示例

摘要

Coordination of large numbers of agents to perform complex tasks in complex domains is a rapidly progressing area of research. Because of the high complexity of the problem, approximate and heuristic algorithms are typically used for key coordination tasks. Such algorithms usually require tuning algorithm parameters to yield the best performance under particular circumstances. Manually tuning parameters is sometimes difficult. In domains where characteristics of the environment can vary dramatically from scenario to scenario, it is desirable to have automated techniques for appropriately configuring the coordination. This research presents an approach to online reconfiguration of heuristic coordination algorithms. The approach uses an abstract simulation to produce a large data set to train a stochastic neural network that concisely models the complex, probabilistic relationship between configurations, environments and performance metrics. The final stochastic neural network, referred as the team performance model, is then used as the core of a tool that allows rapid online or offline configuration of coordination algorithms to particular scenarios and user preferences. The overall system allows rapid adaptation of coordination, leading to better performance in new scenarios. Results show that the team performance model captured key features of a very large configuration space and mostly captured the uncertainty in performance as well. The tool was shown to be often capable of reconfiguring the algorithms to meet user requests for increases or decreases in performance parameters. This work represents the first practical approach to quickly reconfiguring complex sets of algorithms for a specific application.
机译:协调大量代理以在复杂域中执行复杂任务是一个快速发展的研究领域。由于问题的高度复杂性,通常将近似算法和启发式算法用于关键协调任务。此类算法通常需要调整算法参数以在特定情况下产生最佳性能。手动调整参数有时很困难。在环境的特征可能因场景而异的领域中,希望具有用于适当配置协调的自动化技术。这项研究提出了一种在线重新配置启发式协调算法的方法。该方法使用抽象仿真来生成大数据集,以训练一个随机神经网络,该网络可以简洁地对配置,环境和性能指标之间的复杂概率关系进行建模。然后,将最终的随机神经网络(称为团队绩效模型)用作工具的核心,该工具允许针对特定场景和用户喜好对协调算法进行快速在线或离线配置。整个系统允许快速调整协调,从而在新场景中实现更好的性能。结果表明,团队绩效模型捕获了非常大的配置空间的关键特征,并且还捕获了性能的不确定性。事实证明,该工具通常能够重新配置算法,以满足用户对性能参数增加或减少的要求。这项工作代表了针对特定应用快速重新配置复杂算法集的第一种实际方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号