首页> 外文会议>Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V >High Speed Anisotropic Etching of Quartz using SF_6/C_4F_8/Ar/O_2 based chemistry in Inductively Coupled Plasma Reactive Ion Etching system
【24h】

High Speed Anisotropic Etching of Quartz using SF_6/C_4F_8/Ar/O_2 based chemistry in Inductively Coupled Plasma Reactive Ion Etching system

机译:电感耦合等离子体反应离子刻蚀系统中基于SF_6 / C_4F_8 / Ar / O_2的化学物质对石英的高速各向异性刻蚀

获取原文
获取原文并翻译 | 示例

摘要

Etching of quartz and glass for microsystems applications requires optimization of the etch process for high etch rates, high aspect ratios and low rms surface roughness of the etched features. Typically, minimum surface roughness of the etched feature accompanied with maximum etch rate and anisotropy are desired. In this article, we investigate the effect of different gas chemistries on the etch rate and rms surface roughness of the Pyrex~® 7740 in an inductively coupled plasma reactive ion etching (ICP-RIE) system. The gases considered were SF_6 and c-C_4F_8, with additives gases comprising of O_2, Ar, and CH_4. A standard factorial design of experiment (DOE) methodology was used for finding the effect of variation of process parameters on the etch rate and rms surface roughness. By use of 2000 W of ICP power, 475 W of substrate power, SF_6 flow rate of 5 sccm, Ar flow rate of 50 sccm, substrate holder temperature of 20℃, and distance of substrate holder from ICP source to be 120 mm, we were able to obtain an eteh rate of 0.536 μm/min and a rms surface roughness of ~ 1.97 nm. For an etch process optimized for high etch rate and minimum surface roughness using C_4F_8/SF_6/O_2/Ar gases, an etch rate of 0.55 μm/mm and a rms surface roughness of ~ 25 nm was obtained for SF_6 flow rate of 5 sccm, C_4F_8 flow rate of 5 sccm, O_2 flow rate of 50 sccm, Ar flow rate of 50 sccm. Keeping all other process parameters the same, increasing the SF_6 flow rate to 50 sccm resulted in an etch rate of 0.7 μm/min at an rms surface roughness of ~ 800 nm whereas increasing the C_4F_8 flow rate to 50 sccm resulted in an etch rate of 0.67 μm/min at an rms surface roughness of ~ 450 nm . Addition of CH_4 did not contribute significantly to the etch rate while at the same time causing significant increase in the rms surface roughness. Regression or least square fit was used define an arbitrary etch rate number (W_(etch)) and rms surface roughness number (W_(rms)). These numbers were calculated by least square fit to the data comprising of ten correlated etch variables and enable quantization of etch parameters in terms of process parameters. The etch numbers defined in this work as function of process parameters present a very useful tool for the optimization, quantification and characterization of the dielectric etch processes developed in this work for MEMS fabrication and packaging applications.
机译:用于微系统应用的石英和玻璃的蚀刻需要对蚀刻工艺进行优化,以实现蚀刻特征的高蚀刻速率,高长宽比和低rms表面粗糙度。通常,期望蚀刻特征的最小表面粗糙度以及最大蚀刻速率和各向异性。在本文中,我们研究了在感应耦合等离子体反应离子刻蚀(ICP-RIE)系统中,不同气体化学性质对Pyrex〜®7740刻蚀速率和均方根表面粗糙度的影响。所考虑的气体为SF_6和c-C_4F_8,添加剂气体包括O_2,Ar和CH_4。实验的标准析因设计(DOE)方法用于发现工艺参数变化对蚀刻速率和均方根表面粗糙度的影响。通过使用2000 W的ICP功率,475 W的基板功率,SF_6流量为5 sccm,Ar流量为50 sccm,基板支架温度为20℃以及基板支架距ICP源的距离为120 mm,我们能够获得0.536μm/ min的eteh速率和〜1.97 nm的有效值表面粗糙度。对于使用C_4F_8 / SF_6 / O_2 / Ar气体优化以实现高蚀刻速率和最小表面粗糙度的蚀刻工艺,对于SF_6流量为5 sccm,获得的蚀刻速率为0.55μm/ mm,均方根表面粗糙度为〜25 nm, C_4F_8流速为5 sccm,O_2流速为50 sccm,Ar流速为50 sccm。保持所有其他工艺参数相同,将SF_6流速提高到50 sccm,在rms表面粗糙度为〜800 nm时,蚀刻速率为0.7μm/ min,而将C_4F_8流速提高到50 sccm,则蚀刻速率为。 rms表面粗糙度为〜450 nm时为0.67μm/ min。 CH_4的添加对蚀刻速率没有显着贡献,而同时导致均方根表面粗糙度的显着增加。使用回归或最小二乘拟合来定义任意蚀刻速率数(W_(etch))和rms表面粗糙度数(W_(rms))。通过与包括十个相关蚀刻变量的数据的最小二乘拟合来计算这些数字,并且使得能够根据工艺参数对蚀刻参数进行量化。这项工作中定义的蚀刻次数与工艺参数的关系为优化,量化和表征针对MEMS制造和封装应用的这项工作中开发的介电蚀刻工艺提供了非常有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号