首页> 外文会议>Conference on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS >High Speed Anisotropic Etching of Quartz using SF_6/C_4F_8/Ar/O_2 based chemistry in Inductively Coupled Plasma Reactive Ion Etching system
【24h】

High Speed Anisotropic Etching of Quartz using SF_6/C_4F_8/Ar/O_2 based chemistry in Inductively Coupled Plasma Reactive Ion Etching system

机译:在电感耦合等离子体反应离子蚀刻系统中使用基于SF_6 / C_4F_8 / AR / O_2的SF_6 / C_4F_8 / AR / O_2的高速各向异性蚀刻。

获取原文

摘要

Etching of quartz and glass for microsystems applications requires optimization of the etch process for high etch rates, high aspect ratios and low rms surface roughness of the etched features. Typically, minimum surface roughness of the etched feature accompanied with maximum etch rate and anisotropy are desired. In this article, we investigate the effect of different gas chemistries on the etch rate and rms surface roughness of the Pyrex~® 7740 in an inductively coupled plasma reactive ion etching (ICP-RIE) system. The gases considered were SF_6 and c-C_4F_8, with additives gases comprising of O_2, Ar, and CH_4. A standard factorial design of experiment (DOE) methodology was used for finding the effect of variation of process parameters on the etch rate and rms surface roughness. By use of 2000 W of ICP power, 475 W of substrate power, SF_6 flow rate of 5 sccm, Ar flow rate of 50 sccm, substrate holder temperature of 20°C, and distance of substrate holder from ICP source to be 120 mm, we were able to obtain an eteh rate of 0.536 μm/min and a rms surface roughness of ~ 1.97 nm. For an etch process optimized for high etch rate and minimum surface roughness using C_4F_8/SF_6/O_2/Ar gases, an etch rate of 0.55 μm/mm and a rms surface roughness of ~ 25 nm was obtained for SF_6 flow rate of 5 sccm, C_4F_8 flow rate of 5 sccm, O_2 flow rate of 50 sccm, Ar flow rate of 50 sccm. Keeping all other process parameters the same, increasing the SF_6 flow rate to 50 sccm resulted in an etch rate of 0.7 μm/min at an rms surface roughness of ~ 800 nm whereas increasing the C_4F_8 flow rate to 50 sccm resulted in an etch rate of 0.67 μm/min at an rms surface roughness of ~ 450 nm . Addition of CH_4 did not contribute significantly to the etch rate while at the same time causing significant increase in the rms surface roughness. Regression or least square fit was used define an arbitrary etch rate number (W_(etch)) and rms surface roughness number (W_(rms)). These numbers were calculated by least square fit to the data comprising of ten correlated etch variables and enable quantization of etch parameters in terms of process parameters. The etch numbers defined in this work as function of process parameters present a very useful tool for the optimization, quantification and characterization of the dielectric etch processes developed in this work for MEMS fabrication and packaging applications.
机译:用于微系统的石英和玻璃的蚀刻需要优化用于高蚀刻速率,高纵横比和蚀刻特征的低RMS表面粗糙度的蚀刻工艺。通常,需要伴随最大蚀刻速率和各向异性的蚀刻特征的最小表面粗糙度。在本文中,我们研究了不同气体化学物质对电感耦合等离子体反应离子蚀刻(ICP-RIE)系统中Pyrex〜7740的蚀刻速率和RMS表面粗糙度的影响。考虑的气体是SF_6和C-C_4F_8,添加剂气体包含O_2,AR和CH_4。实验(DOE)方法的标准因子设计用于寻找过程参数变化对蚀刻速率和RMS表面粗糙度的影响。通过使用2000W的ICP功率,475W基板功率,SF_6流量为5 SCCM,AR流量为50 SCCM,底板保持器温度为20°C,以及从ICP源的基板支架距离为120毫米,我们能够获得0.536μm/ min的0.536μm/ min的etheh速率,并且Rms表面粗糙度为约1.97nm。对于使用C_4F_8 / SF_6 / O_2 / AR气体进行优化的蚀刻工艺,优化了高蚀刻速率和最小表面粗糙度,获得0.55μm/ mm的蚀刻速率和〜25nm的RMS表面粗糙度,SF_6流量为5 sccm, C_4F_8流量为5 SCCM,O_2流量为50 SCCM,AR流速为50 SCCM。保持所有其他工艺参数相同,将SF_6流量增加到50 sccm,导致蚀刻速率为0.7μm/ min,在RMS表面粗糙度为〜800nm,而将C_4f_8的流速增加到50 sccm导致蚀刻速率0.67μm/ min在〜450nm的rms表面粗糙度下。添加CH_4并没有显着贡献蚀刻速率,同时导致RMS表面粗糙度的显着增加。使用回归或最小二乘拟合定义任意蚀刻速率数(W_(蚀刻))和RMS表面粗糙度数(W_(RMS))。这些数字由至少方形拟合计算到包括十个相关蚀刻变量的数据,并在处理参数方面使得蚀刻参数的量化。在该工作中定义的蚀刻数字作为过程参数的功能为MEMS制造和包装应用中的该工作中开发的介质蚀刻工艺的优化,量化和表征提供了非常有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号