首页> 外文会议>Photomask and Next-Generation Lithography Mask Technology XII pt.1 >RET Masks for the Final Frontier of Optical Lithography
【24h】

RET Masks for the Final Frontier of Optical Lithography

机译:RET掩模用于光学光刻的最终领域

获取原文
获取原文并翻译 | 示例

摘要

With immersion and hyper numerical aperture (NA>1) optics apply to the ITRS 2003/4 roadmap scenario (Figure 1); it is very clear that the IC manufacturing has already stepped into the final frontier of optical lithography. Todayis advanced lithography for DRAM/Flash is operating at k_1 close to 0.3. The manufacturing for leading edge logic devices does not follow too far behind. Patterning at near theoretical lithography imaging limit (k_1=0.25) even with hyper NA optics, the attainable aerial image contrast is marginal at best for the critical feature. Thus, one of the key objectives for low k_1 lithography is to ensure the printing performance of critical features for manufacturing. Resolution enhancement technology (RET) mask in combination with hyper NA and illumination optimization is one primary candidate to enable lithography manufacturing at very low k_1 factor. The use of rule-based Scattering Bars (SB) for all types of phase-shifting masks has become the de facto OPC standard since 180nm node. Model-based SB OPC method derives from interference mapping lithography (IML) has shown impressive printing result for both clear (gate) and dark field (contact and via) mask types. There are four basic types of RET mask candidates for 65nm node, namely, alternating phase-shifting mask (altPSM), attenuated PSM (attPSM), chromeless phase lithography (CPL) PSM, and double dipole lithography (DDL) using binary chrome mask. The wafer printing performances from CPL and DDL have proven both are strong candidates for 45nm nodes. One concern for using RET masks to target 45 nm nodes is likely to be the scaling for SB dimension for 4X mask. To assist imaging effectively with high NA, SB cannot be too small in width. However, for SB to be larger than sub-resolution, they can easily cause unwanted SB printing. The other major concern is the unwanted side lobe printing. This may occur for semi-dense pitch ranges under high NA and strong off-axis-illumination (OA1). Looking ahead, for manufacturing at 45 nm and 32nm nodes, one challenge is to break through the so-called k_1 barrier (0.25). Multiple exposure schemes in conjunction with RET masks is our proposed solution.
机译:具有沉浸式和超数值孔径(NA> 1)的光学器件适用于ITRS 2003/4路线图方案(图1);很显然,IC制造已经进入了光学光刻的最终领域。如今,用于DRAM / Flash的先进光刻技术的k_1接近0.3。前沿逻辑器件的制造紧随其后。即使使用超高NA光学器件,也可以在接近理论光刻成像极限(k_1 = 0.25)的情况下进行构图,对于关键特征而言,可获得的航拍图像对比度充其量只是边缘。因此,低k_1光刻的关键目标之一是确保制造关键特征的印刷性能。与超NA和照明优化相结合的分辨率增强技术(RET)掩模是使光刻技术能够以非常低的k_1系数实现的一种主要候选方法。自180纳米节点以来,对所有类型的相移掩模使用基于规则的散射条(SB)已成为事实上的OPC标准。基于模型的SB OPC方法源自干扰映射光刻(IML),对于透明(栅极)和暗场(接触和过孔)掩模类型均显示出令人印象深刻的印刷效果。用于65nm节点的RET掩模有四种基本类型,即交替相移掩模(altPSM),衰减PSM(attPSM),无铬相光刻(CPL)PSM和使用二元铬掩模的双偶极子光刻(DDL)。来自CPL和DDL的晶圆印刷性能已被证明都是45nm节点的理想选择。使用RET遮罩将目标对准45 nm节点的一个问题很可能是4X遮罩的SB尺寸缩放。为了在高NA下有效地成像,SB的宽度不能太小。但是,要使SB大于子分辨率,它们很容易导致不必要的SB打印。另一个主要问题是不需要的旁瓣印刷。对于在高NA和强离轴照明(OA1)下的半密集螺距范围,可能会发生这种情况。展望未来,在45 nm和32nm节点上制造时,一项挑战是突破所谓的k_1壁垒(0.25)。结合RET掩模的多重曝光方案是我们建议的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号