首页> 外文会议>Conference on Photomask and Next-Generation Lithography Mask Technology >RET Masks for the Final Frontier of Optical Lithography
【24h】

RET Masks for the Final Frontier of Optical Lithography

机译:Ret Passks为光学光刻的最终前沿

获取原文

摘要

With immersion and hyper numerical aperture (NA>1) optics apply to the ITRS 2003/4 roadmap scenario (Figure 1); it is very clear that the IC manufacturing has already stepped into the final frontier of optical lithography. Todayis advanced lithography for DRAM/Flash is operating at k_1 close to 0.3. The manufacturing for leading edge logic devices does not follow too far behind. Patterning at near theoretical lithography imaging limit (k_1=0.25) even with hyper NA optics, the attainable aerial image contrast is marginal at best for the critical feature. Thus, one of the key objectives for low k_1 lithography is to ensure the printing performance of critical features for manufacturing. Resolution enhancement technology (RET) mask in combination with hyper NA and illumination optimization is one primary candidate to enable lithography manufacturing at very low k_1 factor. The use of rule-based Scattering Bars (SB) for all types of phase-shifting masks has become the de facto OPC standard since 180nm node. Model-based SB OPC method derives from interference mapping lithography (IML) has shown impressive printing result for both clear (gate) and dark field (contact and via) mask types. There are four basic types of RET mask candidates for 65nm node, namely, alternating phase-shifting mask (altPSM), attenuated PSM (attPSM), chromeless phase lithography (CPL) PSM, and double dipole lithography (DDL) using binary chrome mask. The wafer printing performances from CPL and DDL have proven both are strong candidates for 45nm nodes. One concern for using RET masks to target 45 nm nodes is likely to be the scaling for SB dimension for 4X mask. To assist imaging effectively with high NA, SB cannot be too small in width. However, for SB to be larger than sub-resolution, they can easily cause unwanted SB printing. The other major concern is the unwanted side lobe printing. This may occur for semi-dense pitch ranges under high NA and strong off-axis-illumination (OA1). Looking ahead, for manufacturing at 45 nm and 32nm nodes, one challenge is to break through the so-called k_1 barrier (0.25). Multiple exposure schemes in conjunction with RET masks is our proposed solution.
机译:沉浸和超数值孔径(NA> 1)光学应用于ITRS 2003/4路线图方案(图1);很明显,IC制造已经进入了光学光刻的最终前沿。 DRAM / FLASH的今天高级光刻在k_1接近0.3时运行。领先边缘逻辑设备的制造不会跟随太远。在近乎理论光刻成像限制(K_1 = 0.25)的图案化即使具有超级Na光学,可获得的空中图像对比度最适合关键特征。因此,低K_1光刻的关键目标之一是确保制造的关键特征的打印性能。分辨率增强技术(RET)掩模结合Hyper Na和照明优化是一个主要候选者,以使光刻制造在非常低的K_1因子。自180nm节点以来,使用基于规则的散射杆(SB)用于所有类型的相移掩模已成为事实上的OPC标准。基于模型的SB OPC方法来自干扰映射光刻(IML)已经显示出清晰(栅极)和暗场(触点和孔)掩模类型的令人印象深刻的打印结果。 65nm节点有四种基本类型的RET掩模候选,即交替相移掩模(ALTPSM),衰减PSM(ATTPSM),无晶硅相位光刻(CPL)PSM和双偶极光刻(DDL)使用二进制铬掩模。来自CPL和DDL的晶片印刷性能已经证明两者都是45nm节点的强候选。对于使用RET掩模来定位45nm节点的一个问题可能是4x掩模的SB维度的缩放。为了有效地用高Na有效地进行成像,Sb宽度不能太小。然而,对于SB大于子分辨率,它们可以容易地引起不需要的SB印刷。其他主要问题是不需要的侧瓣印刷。这可能发生在高NA和强轴上照明(OA1)下的半密集间距范围。展望未来,对于45 nm和32nm节点的制造,一个挑战是突破所谓的K_1屏障(0.25)。与RET Masks一起使用的多种曝光计划是我们提出的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号