首页> 外文会议>International symposium on photomask technology;Conference on photomask technology >Defining a physically accurate laser bandwidth input for optical proximity correction (OPC) and modeling
【24h】

Defining a physically accurate laser bandwidth input for optical proximity correction (OPC) and modeling

机译:定义物理上准确的激光带宽输入以进行光学邻近校正(OPC)和建模

获取原文
获取外文期刊封面目录资料

摘要

In this study, we discuss modeling finite laser bandwidth for application to optical proximity modeling and correction. We discuss the accuracy of commonly-used approximations to the laser spectrum shape, namely the modified Lorentzian and Gaussian forms compared to using measurement-derived laser fingerprints. In this work, we show that the use of the common analytic functions can induce edge placement errors of several nanometers compared to the measured data and therefore do not offer significant improvement compared to the monochromatic assumption. On the other hand, the highly-accurate laser spectrum data can be reduced to a manageable number of samples and still result in sub 0.5nm error through pitch and focus compared to measured spectra. We have previously demonstrated that a 23-point approximation to the laser data can be generated from the spectrometry data, which results in less than 0.1nm RMS error even over varied illumination settings. We investigate the further reduction in number of spectral samples down to five points and consider the resulting accuracy and model-robustness tradeoffs. We also extend our analysis as a function of numerical aperture and illumination setting to quantify the model robustness of the physical approximations. Given that adding information about the laser spectrum would primarily impact the model-generation run-times and not the run-times for the OPC implementation, these techniques should be straightforward to integrate with current full-chip OPC flows. Finally, we compare the relative performance of a monochromatic model, a 5-point laser-spectral fingerprint, and two Modified Lorentzian fits in a commercial OPC simulator for a 32nm logic lithography process. The model performance is compared at nominal process settings as well as through dose, focus and mask bias. Our conclusions point to the direction for integration of this approach within the framework of existing EDA tools and flows for OPC model generation and process-variability verification.
机译:在这项研究中,我们讨论建模有限的激光带宽,以应用于光学邻近建模和校正。我们讨论了与使用测量衍生的激光指纹相比,常用的近似激光光谱形状(即修改的洛伦兹和高斯形式)的准确性。在这项工作中,我们表明,与测量数据相比,使用通用分析函数可能会导致几纳米的边缘放置误差,因此与单色假设相比,并不能提供明显的改进。另一方面,与测量的光谱相比,高精度的激光光谱数据可以减少到可管理的样本数量,并且仍然通过间距和聚焦导致小于0.5nm的误差。先前我们已经证明,可以从光谱数据生成激光数据的23点近似值,即使在变化的照明设置下,其误差也小于0.1nm。我们调查了频谱样本数量进一步减少到五个点的情况,并考虑了由此产生的准确性和模型稳健性的折衷。我们还将分析扩展为数值孔径和照明设置的函数,以量化物理逼近的模型鲁棒性。鉴于添加有关激光光谱的信息将主要影响模型生成运行时间,而不影响OPC实施的运行时间,因此这些技术应易于与当前的全芯片OPC流程集成。最后,我们比较了单色模型,5点激光光谱指纹图和用于32nm逻辑光刻工艺的商用OPC仿真器中的两个修改式Lorentzian拟合的相对性能。在标称工艺设置下以及通过剂量,聚焦和掩膜偏差对模型性能进行比较。我们的结论指出了这种方法在OPC模型生成和过程可变性验证的现有EDA工具和流程框架内进行集成的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号