首页> 外文会议>International symposium on photomask technology >Defining a physically accurate laser bandwidth input foroptical proximity correction (OPC) and modeling
【24h】

Defining a physically accurate laser bandwidth input foroptical proximity correction (OPC) and modeling

机译:定义物理准确的激光带宽输入外光接近校正(OPC)和建模

获取原文

摘要

In this study, we discuss modeling finite laser bandwidth for application to optical proximitymodeling and correction. We discuss the accuracy of commonly-used approximations to the laser spectrumshape, namely the modified Lorentzian and Gaussian forms compared to using measurement-derived laserfingerprints. In this work, we show that the use of the common analytic functions can induce edgeplacement errors of several nanometers compared to the measured data and therefore do not offersignificant improvement compared to the monochromatic assumption. On the other hand, the highly-accurate laser spectrum data can be reduced to a manageable number of samples and still result in sub0.5nm error through pitch and focus compared to measured spectra. We have previously demonstrated thata 23-point approximation to the laser data can be generated from the spectrometry data, which results inless than 0.1nm RMS error even over varied illumination settings. We investigate the further reduction innumber of spectral samples down to five points and consider the resulting accuracy and model-robustnesstradeoffs. We also extend our analysis as a function of numerical aperture and illumination setting toquantify the model robustness of the physical approximations. Given that adding information about thelaser spectrum would primarily impact the model-generation run-times and not the run-times for the OPCimplementation, these techniques should be straightforward to integrate with current full-chip OPC flows.Finally, we compare the relative performance of a monochromatic model, a 5-point laser-spectralfingerprint, and two Modified Lorentzian fits in a commercial OPC simulator for a 32nm logic lithographyprocess. The model performance is compared at nominal process settings as well as through dose, focusand mask bias. Our conclusions point to the direction for integration of this approach within the frameworkof existing EDA tools and flows for OPC model generation and process-variability verification.
机译:在这项研究中,我们讨论了用于应用于光学接近的模型和校正的建模有限激光带宽。我们讨论了与使用测量衍生的LaserFingerrints相比,讨论了激光光谱分析的常用近似的准确性,即改进的Lorentzian和高斯形式。在这项工作中,我们表明,与测量数据相比,使用常见的分析功能可以诱导几纳米的边缘平移误差,因此与单色假设相比,不具有显着的改进。另一方面,与测量的光谱相比,高精度激光谱数据可以减少到可管理的样本数量并且仍然导致通过间距和焦点的子0.5nm误差。我们之前已经证明了可以从光谱测定数据生成激光数据的23点近似,即使在不同的照明设置上也不会产生0.1nm的rms误差。我们调查了将谱样本的进一步减少到5分,并考虑所得到的准确性和模型 - 鲁棒策略特罗德。我们还将分析扩展为数值孔径和照明设置的函数,从而提出物理近似的模型稳健性。考虑到添加有关Thelaser频谱的信息主要影响模型产生的运行时间而不是Opcimplingation的运行时间,因此应该简单地与当前的全芯片OPC流程集成。最后,我们比较相对性能单色模型,5点激光光谱曲线和两个改进的Lorentzian,用于32nm逻辑LITHOGPROCER的商业OPC模拟器中。在标称过程设置以及通过剂量,焦点掩模偏置的模型性能。我们的结论指出了在现有EDA工具的框架内集成了这种方法的方向,以及OPC模型生成和过程可变性验证的流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号