首页> 外文会议>Machine learning and data mining in pattern recognition >On Fixed Convex Combinations of No-Regret Learners
【24h】

On Fixed Convex Combinations of No-Regret Learners

机译:无悔学习者的固定凸组合

获取原文
获取原文并翻译 | 示例

摘要

No-regret algorithms for online convex optimization are potent online learning tools and have been demonstrated to be successful in a wide-ranging number of applications. Considering affine and external regret, we investigate what happens when a set of no-regret learners (voters) merge their respective decisions in each learning iteration to a single, common one in form of a convex combination. We show that an agent (or algorithm) that executes this merged decision in each iteration of the online learning process and each time feeds back a copy of its own reward function to the voters, incurs sublinear regret itself. As a by-product, we obtain a simple method that allows us to construct new no-regret algorithms out of known ones.
机译:用于在线凸优化的无悔算法是有效的在线学习工具,并已被证明在众多应用中都取得了成功。考虑到仿射和外部遗憾,我们调查当一组无悔学习者(投票者)将每次学习迭代中各自的决策合并为凸组合形式的单个公共决策时发生的情况。我们显示了一个代理(或算法),该代理在在线学习过程的每次迭代中执行此合并的决策,并且每次将其自身的奖励函数的副本反馈给选民,从而引起亚线性的遗憾。作为副产品,我们获得了一种简单的方法,该方法允许我们从已知算法中构造出新的无悔算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号