首页> 外文期刊>Signal processing >Fixed-point generalized maximum correntropy: Convergence analysis and convex combination algorithms
【24h】

Fixed-point generalized maximum correntropy: Convergence analysis and convex combination algorithms

机译:定点广义最大熵:收敛性分析和凸组合算法

获取原文
获取原文并翻译 | 示例

摘要

Compared with the MSE criterion, the generalized maximum correntropy (GMC) criterion shows a better robustness against impulsive noise. Some gradient based GMC adaptive algorithms have been derived and available for practice. But, the fixed-point algorithm on GMC has not yet been well studied in the literature. In this paper, we study a fixed-point GMC (FP-GMC) algorithm for linear regression, and derive a sufficient condition to guarantee the convergence of the FP-GMC. Also, we apply sliding-window and recursive methods to the FP-GMC to derive online algorithms for practice, these two called sliding-window GMC (SW-GMC) and recursive GMC (RGMC) algorithms, respectively. Since the solution of RGMC is not analyzable, we derive some approximations that fundamentally result in the poor convergence rate of the RGMC in non-stationary situations. To overcome this issue, we propose a novel robust filtering algorithm (termed adaptive convex combination of RGMC algorithms (AC-RGMC)), which relies on the convex combination of two RGMC algorithms with different memories. Moreover, by an efficient weight control method, the tracking performance of the AC-RGMC is further improved, and this new one is called AC-RGMC-C algorithm. The good performance of proposed algorithms are tested in plant identification scenarios with abrupt change under impulsive noise environment. (C) 2018 Published by Elsevier B.V.
机译:与MSE准则相比,广义最大熵(GMC)准则显示出更好的抗脉冲噪声的鲁棒性。一些基于梯度的GMC自适应算法已被推导并可供实践。但是,关于GMC的定点算法尚未在文献中得到很好的研究。在本文中,我们研究了用于线性回归的定点GMC(FP-GMC)算法,并推导出了足以保证FP-GMC收敛的条件。另外,我们将滑动窗口和递归方法应用于FP-GMC以导出用于实践的在线算法,这两种方法分别称为滑动窗口GMC(SW-GMC)和递归GMC(RGMC)算法。由于无法分析RGMC的解,因此我们得出一些近似值,这些近似值从根本上导致在非平稳情况下RGMC的收敛速度较慢。为解决此问题,我们提出了一种新颖的鲁棒滤波算法(称为RGMC算法的自适应凸组合(AC-RGMC)),该算法依赖于两种具有不同内存的RGMC算法的凸组合。此外,通过有效的权重控制方法,可以进一步提高AC-RGMC的跟踪性能,这种新算法称为AC-RGMC-C算法。在脉冲噪声环境下具有突然变化的工厂识别场景中,对所提出算法的良好性能进行了测试。 (C)2018由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号