首页> 外文会议>Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision >Teaching the computer subjective notions of feature connectedness in a visual scene for real time vision
【24h】

Teaching the computer subjective notions of feature connectedness in a visual scene for real time vision

机译:讲授视觉场景中功能连接的计算机主观概念以实现实时视觉

获取原文
获取原文并翻译 | 示例

摘要

We discus a tool kit for usage in scene understanding where prior information about targets is not necessarily understood. As such, we give it a notion of connectivity such that it can classify features in an image for the purpose of tracking and identification. The tool VFAT (Visual Feature Analysis Tool) is designed to work in real time in an intelligent multi agent room. It is built around a modular design and includes several fast vision processes. The first components discussed are for feature selection using visual saliency and Monte Carlo selection. Then features that have been selected from an image are mixed into useful and more complex features. All the features are then reduced in dimension and contrasted using a combination of Independent Component Analysis and Principle Component Analysis (ICA/PCA). Once this has been done, we classify features using a custom non-parametric classifier (NPclassify) that does not require hard parameters such as class size or number of classes so that WAT can create classes without stringent priors about class structure. These classes are then generalized using Gaussian regions which allows easier storage of class properties and computation of probability for class matching. To speed up to creation of Gaussian regions we use a system of rotations instead of the traditional Psuedo-inverse method. In addtion to discussing the structure of VFAT we discuss training of the current system which is relatively easy to perform. ICA/PCA is trained by giving VFAT a large number of random images. The ICA/PCA matrix is computed by features extracted by VFAT. The non-parametric classifier NPclasify it trained by presenting it with images of objects having it decide how many objects it thinks it sees. The difference between what it sees and what it is supposed to see in terms of the number of objects is used as the error term and allows WAT to learn to classify based upon the experimenters subjective idea of good classification.
机译:我们讨论了用于场景理解的工具套件,其中不一定了解有关目标的先验信息。因此,我们给它一个连接性的概念,以便它可以对图像中的特征进行分类,以进行跟踪和识别。 VFAT(视觉特征分析工具)工具旨在在智能多代理机房中实时工作。它围绕模块化设计构建,并包含多个快速视觉流程。讨论的第一个组件用于使用视觉显着性和蒙特卡洛选择进行特征选择。然后,将从图像中选择的特征混合为有用且更复杂的特征。然后使用独立成分分析和主成分分析(ICA / PCA)的组合来缩小所有特征的尺寸并进行对比。完成此操作后,我们将使用自定义的非参数分类器(NPclassify)对特征进行分类,该分类器不需要诸如类大小或类数之类的硬参数,以便WAT无需严格的类结构先验即可创建类。然后使用高斯区域对这些类别进行泛化,从而可以更轻松地存储类别属性并计算类别匹配的概率。为了加快创建高斯区域,我们使用旋转系统代替了传统的伪逆方法。除了讨论VFAT的结构外,我们还讨论了相对容易执行的当前系统的培训。通过为VFAT提供大量随机图像来训练ICA / PCA。 ICA / PCA矩阵由VFAT提取的特征计算。非参数分类器NPclas通过向其展示对象的图像来对其进行分类,以决定它认为看到了多少个对象。根据对象数量看到的与应该看到的之间的差异被用作误差项,并使WAT能够根据实验者的良好分类主观思想进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号