首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems;IROS 2012 >Sampling-based nonholonomic motion planning in belief space via Dynamic Feedback Linearization-based FIRM
【24h】

Sampling-based nonholonomic motion planning in belief space via Dynamic Feedback Linearization-based FIRM

机译:通过基于动态反馈线性化的FIRM在信念空间中基于采样的非完整运动计划

获取原文

摘要

In roadmap-based methods, such as the Probabilistic Roadmap Method (PRM) in deterministic environments or the Feedback-based Information RoadMap (FIRM) in partially observable probabilistic environments, a stabilizing controller is needed to guarantee node reachability in state or belief space. In belief space, it has been shown that belief-node reachability can be achieved using stationary Linear Quadratic Gaussian (LQG) controllers, for linearly controllable systems. However, for nonholonomic systems such as a unicycle model, belief reachability is a challenge. In this paper, we construct a roadmap in information space, where the local planners in partially-observable space are constructed by utilizing a Kalman filter as an estimator along with a Dynamic Feedback Linearization-based (DFL-based) controller as the belief controller. As a consequence, the task of belief stabilization to pre-defined nodes in belief space is accomplished even for nonholonomic systems. Therefore, a query-independent roadmap is generated in belief space that preserves the “principle of optimality”, required in dynamic programming solvers. This method serves as an offline POMDP solver for motion planning in belief space, which can seamlessly take obstacles into account. Experimental results show the efficiency of both individual local planners and the overall planner over the information graph for a nonholonomic model.
机译:在基于路线图的方法中,例如确定性环境中的概率路线图方法(PRM)或部分可观察的概率环境中的基于反馈的信息路线图(FIRM),需要稳定控制器来保证状态或置信空间中的节点可达性。在置信空间中,已经表明,对于线性可控系统,使用固定线性二次高斯(LQG)控制器可以实现置信节点的可达性。但是,对于非完整系统(例如单轮脚踏车模型),信念可达性是一个挑战。在本文中,我们构造了信息空间中的路线图,其中部分可观察空间中的本地计划者通过使用卡尔曼滤波器作为估计器以及基于动态反馈线性化(基于DFL)的控制器作为置信度控制器来构造。结果,即使对于非完整系统,也可以完成对信念空间中预定义节点的信念稳定任务。因此,在信念空间中生成了与查询无关的路线图,该路线图保留了动态规划求解器所需的“最优性原则”。该方法用作信念空间中运动计划的离线POMDP求解器,可以无缝考虑障碍物。实验结果表明,对于非完整模型,信息图上的各个局部计划者和整体计划者的效率都很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号