首页> 外文会议>Artificial neural networks in pattern recognition >The Mathematics of Divergence Based Online Learning in Vector Quantization
【24h】

The Mathematics of Divergence Based Online Learning in Vector Quantization

机译:向量量化中基于散度的在线学习数学

获取原文
获取原文并翻译 | 示例

摘要

We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Frechet-derivatives for the divergences, wich can be immediately plugged into the online-learning rules. We provide the mathematical foundation of the respective framework. This framework includes usual gradient descent learning of prototypes as well as parameter optimization and relevance learning for improvement of the performance.
机译:我们提出在有监督和无监督向量量化的梯度下降学习中使用散度作为平方欧几里德距离的替代方法。该方法基于确定差异的Frechet导数,可以立即将其插入在线学习规则中。我们提供了相应框架的数学基础。该框架包括通常的原型梯度下降学习以及参数优化和相关性学习,以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号