首页> 外文会议>Algorithms and computation >Shifting Strategy for Geometric Graphs without Geometry
【24h】

Shifting Strategy for Geometric Graphs without Geometry

机译:没有几何图形的几何图形的转移策略

获取原文
获取原文并翻译 | 示例

摘要

We give a simple framework as an alternative to the celebrated shifting strategy of Hochbaum and Maass [J. ACM, 1985] which has yielded efficient algorithms with good approximation bounds for numerous optimization problems in low-dimensional Euclidean space. Our framework does not require the input graph/metric to have a geometric realization - it only requires that the input graph satisfy some weak property referred to as growth boundedness. We show how to obtain polynomial time approximation schemes (PTAS) for maximum (weighted) independent set problem on this graph class. Via a more sophisticated application of our framework, we also show how to obtain a PTAS for the maximum (weighted) independent set for intersection graphs of (low-dimensional) fat objects that are expressed without geometry.
机译:我们提供了一个简单的框架,以替代著名的Hochbaum和Maass的转移战略[J. [ACM,1985]已经为低维欧几里德空间中的许多优化问题提供了具有良好近似边界的有效算法。我们的框架不需要输入图/度量具有几何实现-仅要求输入图满足一些称为增长有界性的弱属性。我们展示了如何在此图类上获得最大(加权)独立集问题的多项式时间近似方案(PTAS)。通过我们框架的更复杂的应用,我们还将展示如何为没有几何图形表示的(低维)脂肪对象的相交图获得最大(加权)独立集的PTAS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号