首页> 外文期刊>Journal of Combinatorial Optimization >Shifting strategy for geometric graphs without geometry
【24h】

Shifting strategy for geometric graphs without geometry

机译:没有几何图形的几何图形的转移策略

获取原文
获取原文并翻译 | 示例

摘要

We give a simple framework which is an alternative to the celebrated and widely used shifting strategy of Hochbaum and Maass (J. ACM 32(1):103–136, 1985) which has yielded efficient algorithms with good approximation bounds for numerous optimization problems in low-dimensional Euclidean space. Our framework does not require the input graph/metric to have a geometric realization—it only requires that the input graph satisfy some weak property referred to as growth boundedness. Growth bounded graphs form an important graph class that has been used to model wireless networks. We show how to apply the framework to obtain a polynomial time approximation scheme (PTAS) for the maximum (weighted) independent set problem on this important graph class; the problem is W[1]-complete.
机译:我们给出了一个简单的框架,该框架可以替代著名的Hochbaum和Maass的移位策略(J. ACM 32(1):103-136,1985),它产生了具有良好近似边界的高效算法,可以解决许多优化问题。低维欧氏空间。我们的框架不需要输入图/度量具有几何实现,而仅要求输入图满足某些被称为增长有界性的弱属性。增长有界图形成了一种重要的图类,已用于对无线网络进行建模。我们展示了如何应用该框架来获得该重要图类上最大(加权)独立集问题的多项式时间逼近方案(PTAS)。问题是W [1]-完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号