首页> 中国专利> 非易失性电荷捕获型存储器件、其制备方法及应用

非易失性电荷捕获型存储器件、其制备方法及应用

摘要

本发明涉及非易失性电荷捕获型存储器件、其制备方法及应用,制备方法操作简单、易于控制,所得存储器件中作为存储介质的纳米微晶分布均匀。所述非易失性电荷捕获型存储器件的制备方法包括以下步骤:a)在衬底表面形成隧穿层;b)在隧穿层上形成组成均匀的(ZrO

著录项

  • 公开/公告号CN102208346A

    专利类型发明专利

  • 公开/公告日2011-10-05

    原文格式PDF

  • 申请/专利权人 南京大学;

    申请/专利号CN201110102040.3

  • 发明设计人 汤振杰;夏奕东;殷江;刘治国;

    申请日2011-04-22

  • 分类号H01L21/334;C23C14/08;C23C14/28;H01L29/04;H01L29/12;H01L29/76;

  • 代理机构南京天翼专利代理有限责任公司;

  • 代理人周静

  • 地址 210093 江苏省南京市鼓楼区汉口路22号

  • 入库时间 2023-12-18 03:26:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-06-15

    未缴年费专利权终止 IPC(主分类):H01L21/334 授权公告日:20130828 终止日期:20150422 申请日:20110422

    专利权的终止

  • 2013-08-28

    授权

    授权

  • 2011-11-23

    实质审查的生效 IPC(主分类):H01L21/334 申请日:20110422

    实质审查的生效

  • 2011-10-05

    公开

    公开

说明书

技术领域

本发明涉及一种非易失性电荷捕获型存储器件、其制备方法及应用。

背景技术

几十年来,集成电路的发展基本遵循了Intel公司创始人之一的Gordon E.Moore博士1964年预言的摩尔定律:在集成电路的单个芯片上集成的元件数,即集成电路的集成度,每12至18个月增加一倍,特征尺寸缩小倍。随着器件的特征尺寸越来越小,传统的浮栅型非易失性半导体存储器件面临严重的漏电问题。浮栅型存储器件中隧穿层尺寸的不断减小,以至于一个缺陷就会导致多晶硅浮栅中存储的电荷全部损失。为了解决这一难题,多晶硅-氧化物-氮化物-氧化物-硅(SONOS)型半导体存储器件被广泛地研究。在这类器件中,电子被Si3N4存储层中分立的陷阱捕获,起到存储的效果。由于,这些陷阱彼此分离,所以隧穿层中的缺陷不能泄露全部的存储电子,器件的保持性能得到改善,从而克服了传统浮栅型存储器件的弊端。近年来,采用纳米微晶作为电荷存储介质成为研究的热点。但是,许多研究工作者将大部分精力花费在制备金属纳米微晶和半导体纳米微晶存储器件中,对其他形式纳米微晶研究较少。

近年来,高介电常数材料作为CMOS工艺栅介质层已经被广泛研究,同时伪二元氧化物也是其中研究的热点。通过混合两种高介电常数材料,实现介电性能的提高。正是基于这点想法,可以通过混合两种结晶温度不同的高介电常数材料,利于两者结晶温度的差别,通过高温退火处理,使其中一种材料结晶,而另一种材料依旧保持非晶态,结晶出的纳米微晶被非晶母相所包围。利用将这一工艺特点与传统SONOS型半导体电荷存储工艺相结合,实现高介电常数材料纳米微晶基电荷捕获型存储器件。另一方面,相比SiO2,Al2O3具有高的介电常数(9)和宽的禁带宽度(8.8eV),所以采用Al2O3作为隧穿层和阻挡层代替传统器件中的SiO2,能很好的减小漏电流和提高器件的存储性能。ZrO2作为高介电常数材料已经被证明具有代替SiO2作为栅介质材料的潜力。同时相比于SiO2和Al2O31000℃以上的结晶温度,其结晶温度相对较低。

作为薄膜生长工艺中的主要制备方法,脉冲激光沉积法(PLD)和原子层化学气相沉积(ALD)不仅对薄膜的生长起到关键的作用,而且对器件的性能也起着举足轻重的作用。脉冲激光沉积法方法是20世纪80年代后期发展起来的一种新型薄膜制备技术。其基本原理是利用经过聚焦而具有很高能流密度的紫外脉冲激光照射靶材,产生激光等离子体,最终在衬底上沉积成膜。其最大优点是膜的化学成分和靶的化学成分很接近,因而易于获得成分可严格控制的膜。它特别适合于制备高熔点、多组分的氧化物薄膜和异质结构。原子层化学气相沉积(ALD)是high-k材料制备领域正在发展中的极具挑战性的一种制备技术。其原理是利用气相源在衬底表面吸附或反应的自饱和性实现逐层(layer by layer)生长,生成薄膜的厚度在工作窗口内不依赖于衬底温度、蒸气压、源流量等生长参数,只与循环周期的数目有关。由于其独特的自限制生长过程,原子层沉积成膜具有精确的厚度控制、优异的三维贴合性和大面积成膜均匀性等优点,在制备超薄薄膜、纳米结构方面独具优势。

发明内容

本发明提供一种非易失性电荷捕获型存储器件的制备方法,操作简单、易于控制,作为存储介质的纳米微晶分布均匀。

本发明还提供上述制备方法得到的非易失性电荷捕获型存储器件。

本发明还提供上述制备方法得到的非易失性电荷捕获型存储器件在信息存储和不挥发半导体存储器件中的应用。

所述非易失性电荷捕获型存储器件的制备方法包括以下步骤:

a)在衬底表面形成隧穿层;

b)在隧穿层上形成组成均匀的(ZrO2)x(M)1-x薄膜作为存储层,其中1>x>0.5,所述M为SiO2或Al2O3,优选0.6≤x≤0.9,进一步优选0.7≤x≤0.9。

c)在存储层上形成阻挡层;

d)将以上制备的试样在低于M熔点的温度下退火,使ZrO2纳米微晶从存储层中析出,并被非晶母相包围,所述ZrO2纳米微晶作为存储介质。

本发明基于混合物中两种物质结晶温度的差别,经过高温退火处理的手段,使混合物中的过饱和成分结晶析出,即ZrO2纳米微晶从存储层母相中析出,并且被非晶母相所包围,从而实现纳米微晶存储的效果。这种方法所得作为存储介质的纳米微晶均匀分布在非晶母相中。显然,这会导致最后的非晶母相与最初在隧穿层上形成的存储层薄膜的组成不一样,但存储层整体的组成不变。作为常识,为了避免对器件结构造成不利影响,退火的时间应有一定限制,优选步骤d)中退火时间为10~60s。退火气氛为现有技术,氧气气氛或氮气气氛均可。本领域技术人员可根据具体情况,选择合适的退火条件。

在隧穿层上形成(ZrO2)x(M)1-x薄膜的方法优选为:以(ZrO2)x(M)1-x为靶材,在隧穿层上用脉冲激光沉积方法沉积(ZrO2)x(M)1-x薄膜。脉冲激光沉积条件优选为能量为150~400mJ,频率1~10Hz。(ZrO2)x(M)1-x靶材的制备方法采用现有技术,如将ZrO2和SiO2(或者ZrO2和Al2O3)粉体混合均匀,然后在10~15MPa的压力下压成圆片,最后在125O℃下烧制6小时,制成(ZrO2)x(M)1-x陶瓷靶材。作为现有技术,通常为了使ZrO2和SiO2(或者ZrO2和Al2O3)粉体混合均匀,需要在球磨机中湿磨,然后将粉体烘干后再压制圆片。

优选所述隧穿层和阻挡层均为Al2O3,进一步优选所述隧穿层、存储层和阻挡层的厚度分别为2~4nm、5nm和7~12nm。

衬底优选采用Si。

当然,本发明还应在阻挡层上面沉积铂、铝、TaN或者HfN等公知材料作为上电极。

上述制备方法所得非易失性电荷捕获型存储器件,包含顺序连接的隧穿层、存储层和阻挡层,利用(ZrO2)x(SiO2)1-x为存储层,通过退火处理得到的ZrO2纳米微晶起到存储介质的作用。结构如图1所示。

上述制备方法所得非易失性电荷捕获型存储器件在信息存储和不挥发半导体存储器件中的应用,原理图如图2所示:

a)当铂电极相对与Si衬底施加一个正电压,电场由上电极指向衬底。随着施加电压的增加,电场强度不断增加。Si衬底表面达到反型,形成表面电子通道,并且在电场作用下隧穿过Al2O3隧穿层,进入到(ZrO2)x(M)1-x存储层,进而被ZrO2纳米微晶表面的电子陷阱态捕获,达到存储的效果,该过程就是该非易失性电荷捕获型存储器件的写入过程。

c)当切断电源,电子被存储在ZrO2纳米微晶中,而不会泄漏,从而起到电荷存储的效果。

d)当铂金电极相对与Si衬底施加一个负电压,电场由衬底指向上电极。存储在ZrO2纳米微晶中的电子在电场力的作用下,穿过隧穿层重新回到衬底,从而实现对器件的擦除操作。

本发明具有以下有益效果:

a)该器件结构能获得大的存储信息量。图3显示当扫描电压为±1V时,存储窗口为0.3V。当扫描电压为±5V和±14V时,已经具有明显的滞回窗口,分别为4.0V和7.5V。

b)图4显示,相比于退火之前,退火之后的器件具有大的存储窗口,说明ZrO2纳米微晶对器件的存储性能起着至关重要的作用。ZrO2纳米微晶能提高薄膜中的陷阱态密度,从使器件具有高电荷存储量。

c)由图5可以看出,随着测试温度的升高,器件的电荷损失量增大;且经过105次擦除写入后的器件电荷损失较大。但是,在150℃下(测试时间为4×104),ZrO2纳米微晶基非易失性电荷捕获型存储器件在经过105次擦除写入后的电荷损失量仅为12%。

d)图6为:ZrO2纳米微晶基非易失性电荷捕获型存储器件不同温度下的抗疲劳特性。从图中可以看出,随着温度的升高,器件的抗疲劳性能稍有下降,150℃下,存储窗口仅仅减小了0.15V。表明以ZrO2纳米微晶作为存储介质能够显著提高器件的抗疲劳性能。

附图说明

图1:ZrO2纳米微晶基非易失性电荷捕获型存储器件的高分辨投射电子显微图。

图2:ZrO2纳米微晶基非易失性电荷捕获型存储器件的结构及其原理示意图。其中,紧邻Si沉底的Al2O3作为隧穿层,紧邻铂电极的Al2O3作为阻挡层,(ZrO2)x(SiO2)1-x作为存储层,退火处理得到的ZrO2纳米微晶作为存储介质。

图3:高频情况下(1MHz),ZrO2纳米微晶基非易失性电荷捕获型存储器件在不同扫描电压下的电容-电压特性。其中x轴表示施加在铂电极上的电压(单位为伏特),y轴表示归一化的存储电容。

图4:退火前后器件存储窗口随着铂电极扫描电压的变化情况。其中x轴表示施加在铂电极上的扫描电压(单位为伏特),y轴表示存储窗口(单位为伏特)。

图5:不同测试温度下,ZrO2纳米微晶基非易失性电荷捕获型存储器件的保持性能。其中x轴表示保持时间(单位为秒),y轴表示电荷损失量。图中,空心曲线为未经过105次写入/擦除操作的器件;实心曲线为经受105次写入/擦除操作的器件。

图6:ZrO2纳米微晶基非易失性电荷捕获型存储器件的抗疲劳性能。其中x轴表示写入/擦除次数,y轴表示平带电压(单位为伏特)。图中,空心曲线为擦除操作;实心曲线为写入操作。

具体实施方式

实施例1:基于Si衬底,ZrO2纳米微晶基非易失性电荷捕获型存储器件的制备过程具体如下:

(a)将Si衬底将衬底放入适量丙酮中,超声清洗后,用去离子水超声清洗,漂洗掉衬底表面残留的杂质。然后衬底放入氢氟酸中浸泡,去除表面氧化物,再使用去离子水超声清洗,用高纯氮气吹干后放入原子层化学气相沉积腔体内以备沉积薄膜。

(b)沉积过程中采用Al(CH3)3作为金属源,臭氧为氧源。Al(CH3)3伴随氮气进入腔体,与羟基终端的硅衬底表面反应并达到饱和,之后氧源由氮气带入腔体与金属源发生表面反应生成Al2O3,形成隧穿层,通过控制原子层沉积循环系数,沉积厚度为3nm的Al2O3作为隧穿层。

(c)当隧穿层沉积结束,将试样放入脉冲激光沉积腔中,利用制备的(ZrO2)x(SiO2)1-x靶材,在试样表面沉积(ZrO2)x(SiO2)1-x薄膜,作为存储层,控制薄膜厚度为5nm。其中,x=0.8。(ZrO2)x(SiO2)1-x靶材的制备方法为:将ZrO2和SiO2粉体按照摩尔比混合;而后在行星球磨机中湿磨12小时,将粉体烘干,然后在10~15MPa的压力下压成厚度为5mm,直径20mm的圆片,最后在1250℃下烧制6小时,制成(ZrO2)x(SiO2)1-x陶瓷靶材。

(d)(ZrO2)x(SiO2)1-x存储层沉积结束,在其表面沉积一层7nm厚的Al2O3介质层,作为阻挡层,形成过程如步骤(b)。

(e)上述制备过程结束后,将器件置于快速退火炉中,在800℃,氧气气氛中退火30秒。

(f)铂(Pt)作为上电极,通过磁控溅射的方法沉积在经过退火处理的器件上面。在Si沉底侧面涂覆上一层导电银胶作为下电极。

实验中对ZrO2纳米微晶基非易失性电荷捕获型存储器件存储窗口以及保持性能的测量均使用Keithley4200半导体参数分析仪完成。高频扫描情况下,上电极接正电压,下电极接负电压,扫描过程中电子在电场作用下进入存储层被ZrO2纳米微晶所捕获,相当于写入操作;相反,上电极接负电压,下电极接正电压,在扫描过程中,被ZrO2纳米微晶所捕获的电子在电场力的作用下重新回到衬底,相当于擦除操作。

保持性能的测试方法为:在上电极施加10V,1ms的电压脉冲,电子在电场作用下进入存储层被ZrO2纳米微晶所捕获。测试不同时间以后电荷的损失量,从而获得不同保持时间下的电荷损失量。

器件抗疲劳性能的的测试方法为:首先在上电极施加10V,1ms的电压脉冲,电子在电场作用下进入存储层被ZrO2纳米微晶所捕获。然后在上电极施加-10V,1ms的电压脉冲,电子在电场作用下回到衬底。如此反复105次。

所述测试结果如图3-6所示。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号