首页> 中国专利> 用于化学机械抛光的对准主动护圈表面与晶片表面的设备和方法

用于化学机械抛光的对准主动护圈表面与晶片表面的设备和方法

摘要

减小化学机械抛光后的晶片边缘的边缘轮廓与边缘内的化学机械抛光后的晶片中心部分的中心轮廓之间的差异的化学机械抛光系统和方法。将晶片安装到晶片载体的载体表面上,使晶片旋转轴装在万向架上,以便晶片旋转轴相对晶片主轴的旋转主轴轴线能全方位运动。护圈将晶片在载体表面上的运动限制为垂直于晶片轴的方向。护圈安装在晶片载体上并可相对于晶片载体运动。直线轴承由轴承座和轴构成,使得晶片载体与护圈之间允许的运动方向只是平行于晶片轴的运动,因而晶片平面与护圈可以共平面。

著录项

  • 公开/公告号CN1500029A

    专利类型发明专利

  • 公开/公告日2004-05-26

    原文格式PDF

  • 申请/专利权人 兰姆研究有限公司;

    申请/专利号CN02807596.X

  • 发明设计人 M·A·萨尔达纳;D·V·威廉斯;

    申请日2002-03-28

  • 分类号B24B37/04;B24B41/06;B24B49/16;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人肖春京;章社杲

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 15:18:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-06-01

    未缴年费专利权终止 IPC(主分类):B24B37/04 授权公告日:20080730 终止日期:20100328 申请日:20020328

    专利权的终止

  • 2009-07-15

    专利申请权、专利权的转移(专利权的转移) 变更前: 变更后: 登记生效日:20090605 申请日:20020328

    专利申请权、专利权的转移(专利权的转移)

  • 2008-07-30

    授权

    授权

  • 2004-08-04

    实质审查的生效

    实质审查的生效

  • 2004-05-26

    公开

    公开

说明书

1.技术领域

本发明总的涉及化学机械抛光(CMP)系统和用于提高CMP操作的性能和效率方法。特别涉及承载晶片的安装万向架的板,其中通过将晶片支承板的晶片接合表面与主动护圈的晶片抛光机接合表面对准来减小边缘效应。

2.背景技术

半导体器件制造中,需要在诸如用硅构成的直径为200mm或300mm的盘形的半导体晶片上进行化学机械抛光(CMP)操作。为了便于说明,以下用于描述的技术术语“晶片”包括那些用于支持电路或电子电路的半导体晶片,或其他平面构件,或衬底。

集成电路可以按多层结构的形式形成在这种晶片上。晶体管器件可以形成在一层,并且在随后的多个层中图形化出互连金属化线,将互连金属化线电连接到晶体管器件,以构成所要求的功能器件。已图形化的导电层用介电材料与其他导电层绝缘。当形成更多的金属化层和相关的介电层时,通过进行CMP等来平整介电材料的需求增加了。如果不进行这种平整处理,由于表面布局的变化而很难制造附加的金属纯层。

CMP系统通常包括:例如带式抛光机等抛光操作台,用于抛光晶片的选定表面。典型的CMP系统中,晶片安装在载体的晶片接合表面(载体表面)上。安装的晶片有露出表面(晶片表面),该露出表面用于与抛光表面(例如抛光带的表面)接触。载体和晶片按旋转方向旋转。例如,当露出的旋转晶片表面与露出的运动抛光表面在力作用下彼此靠压并彼此相对运动时就能实现CMP处理。所述的载体表面确定载体平面,所述露出的晶片表面确定晶片平面,所述与晶片平面接触的露出的抛光表面确定抛光平面。

过去,晶片载体被安装在为载体提供旋转和抛光力的主轴上。例如,为了使晶片载体能将露出的晶片表面适当定位,以与露出的抛光表面进行理想的接触,在主轴与晶片载体之间设置万向架。万向架允许载体平面相对于晶片载体绕其旋转的主轴倾斜。这种倾斜允许载体平面与带的抛光平面平行。但是,设置万向架使载体表面与安装在主轴上的力传感器之间有更多的机械构件。结果,机械构件中的摩擦使传感器读出的力减小的可能性增加。

另外,设置所谓的主动护圈,以对抗水平力支承晶片,从而将晶固定在载体板上。但是,这种主动护圈设计没有考虑到其不利特征。因此,该设计没有考虑这种主动护圈的类似万向支架的作用。安装在载体上的这种护圈的这种作用可以通过护圈的露出表面(环表面)确定的护圈平面来了解。该设计没有认识到这种主动护圈的导向的缺少,将允许这种护圈平面的位置由于作用到环表面的带的水平力的作用而与晶片平面轴向偏移。偏移量叫做‘外露’,如果外露是正,说明晶片平面与靠近环平面相比更靠近带的抛光平面。通常,晶片抛光前,负显露用于将晶片安置在载体表面上适当的部位或位置。

作为现有的主动护圈的引导缺陷的一个例子,相对晶片驱动该主动护圈用的马达例如气囊等是软的,允许护圈平面相对载体平面和晶片平面按不受控制的方式运动。这种不受控制的护圈相对晶片载体的运动允许护圈平面倾斜,而不再与载体平面和晶片平面平行。遗憾,在已倾斜的取向上,护圈与晶片平面不在同一平面。结果,该倾斜造成沿晶片和护圈的周边(即载体的旋轴周围)在不同角度的外露量不同。这种不同的外露量是不希望出现的,因为,它们是不受控制的,而且在CMP操作中会引起问题。在晶片边缘所出现的问题通常包括,从晶片的外周边向内延伸5-8mm的晶片表面环形部分。因为,外露值变化,在各个不同的外露值,已抛光的晶片边缘的垂直轮廓有不同值,因此在CMP抛光中会出现问题。

因此需要一种方法,既允许护圈相对晶片平面运动同时限制护圈运动来避免这种倾斜。还需要一种方法来防止护圈平面与载体平面和晶片平面不平行,使护圈平面与晶片平面对准,即,共平面。还需要一种结构和方法,既允许护圈相对晶片平面运动,同时避免造成晶片和载体旋转轴上的护圈在不同旋转角处具有不同外露值的相对运动。特别是,目前需要一种合适的结构和方法来提供CMP操作中晶片边缘的均匀轮廓,同时保持相对晶片平面主动运动的护圈优点。

发明内容

广而言之,本发明通过提供解决上述问题的CMP设备和方法来满足这些要求,其中,提供的结构和方法允许护圈相对晶片平面运动,同时限制护圈运动,从而避免引起护圈平面变成不对准的倾斜,也就是说避免载体平面与晶片平面不平行,或避免载体平面与晶片平面不共平面。这种设备和方法中,护圈可以相对晶片平面运动,但护圈相对晶片平面的相对运动受到限制,使得抛光晶片时护圈平面与晶片平面可以共平面。特别是,将相对运动的方向限制到垂直于晶片平面和载体平面的方向,因此,使沿晶片和护圈的周围(即载体的旋主轴周围)处于不同角度的任何希望的外露量保持相同。因此,护圈的优点是,护圈相对晶片平面有效运动,而没有不均匀外露的问题。

按本发明的系统和方法的一个实施例中,载体板设有支承晶片的载体平面。护圈安装在载体平面上并相对载体板运动。载体板与护圈之间设置有直线轴承装置。该直线轴承装置用来限制护圈相对晶片平面的运动,其中,允许的运动保持护圈平面平行晶片平面,或者,在抛光时,保持护圈平面与晶片平面共平面。

按本发明的设备和方法的另一个实施例中,包括该载体板的组件设置有万向架,以相对主轴轴承座可运动地安装载体板。主轴轴承座安装在驱动轴上。万向架允许载体板运动,以使晶片平面可以运动,并在CMP操作中变成与抛光平面共平面。护圈固定到载体板上并相对载体板运动,因此,也可以相对晶片运动。然而限制这两种相对运动的直线轴承装置只允许护圈沿着平行于载体板中心轴线的路径相对载体板运动。

按本发明的系统和方法的另一个实施例中,直线轴承装置设置成为在晶片载体周围隔开的单个直线轴承组的阵列。

按本发明的系统和方法的另一个实施例中,直线轴承装置设置成为与护圈结合的单个直线轴承组的阵列,其中,抛光带加到护圈上的力传送到与载体板的轴线平行的载体板,以利于护圈校准。

按本发明的设备和方法的相关实施例中,直线轴承装置组装有与马达结合的护圈,用于使护圈相对安装在载体上的晶片共平面,从而使抛光操作中将通过抛光垫接合的晶片露出表面和护圈表面共平面。

通过以下结合附图举例说明本发明的原理所做的详细说明,本发明的其他技术方案和优点将变得更清楚。

附图说明

通过以下结合附图对本发明所做的详细说明将容易理解本发明,附图中相同的标号指示相同的构件。

图1是本发明一个实施例的正视图,其中,晶片载体板支承与化学机械抛光表面接触的晶片和护圈;

图2是沿图1中2-2线的平面图,显示接触晶片载体板承载的晶片和环绕晶片的护圈的画成带形的抛光表面;

图3沿图2中的3-3线取的剖视图,显示一万向架总装配体,它允许晶片载体板的旋转轴相对主轴的旋转轴运动,示出晶片载体板与护圈之间的直线轴承组件;

图4A是沿图2中4A-4A线的剖视图,显示保持护圈组装到载体板上的连接器主轴,和使护圈偏置在护圈外露具有最大值的位置,以晶片固定到载体板上;

图4B是与图4A类似的剖视图,显示使护圈与弹簧的相反力运动的直线马达,其中示出的护圈处于用于抛光晶片的护圈外露值为0的位置中;

图4C是图4B的局部放大图,显示外露值为0和护圈平面和晶片平面的共平面。

图4D是与图4A和图4B类似的剖视图,显示将护圈运动到离开晶片载体最大距离位置的直线马达,以便将晶片设置在载体板上;

图5是沿图2中5-5线的剖视图,显示用于在载体板与护圈之间固定直线轴承组件的各种固定件,以将载体板和护圈之间的相对运动限制到垂直于晶片平面和载体平面的方向;

图6是沿图2中6-6线的剖视图,显示设置在主轴中并连接到晶片载体板的真空和气体供给线路;

图7是沿图2中7-7线的剖视图,显示连接到测力传感器的万向架总装配体,万向架总装配体包括容纳在晶片载体板的锥形腔中的驱动销;

图8是沿图2中8-8线的剖视图,显示固定在护圈基座的护圈;

图9是晶片载体板的一个三维图,显示从用于四个直线轴承组件的晶片载体板延伸出的凸缘;

图10是晶片载体板的一个三维图,显示被护圈包围的晶片接合表面;

图11是一流程图,示出按本发明使护圈的露出表面和晶片的对准的方法的操作;

图12是一流程图,示出按本发明从晶片接合表面和从护圈表面给晶片载体传送各个力的方法的操作;

图13是一流程图,示出按本发明校准护圈的方法的操作;

图14是护圈的校准产生的曲线图;

图15是一流程图,显示本发明的校准曲线的方法的操作;

图16是流程图,显示本发明的用于减小晶片的化学机械抛光边缘部分的边缘轮廓与边缘部分内晶片的化学机械抛光中心部分的中心轮廓之间的差别的减小方法;

图17A是用没有设置本发明的直线轴承组件的护圈抛光的晶片的外边缘的剖视图;

图17B是图17A所示晶片的剖视图,显示晶片中心部分的轮廓。

具体实施方式

本发明公开了一种能精确控制晶片露出表面的抛光的CMP系统和方法。为了解决上述问题,本发明通过提供解决上述问题的CMP系统和方法来满足这些要求,其中,提供的结构和方法允许护圈相对晶片平面运动,但限制护圈运动,从而避免引起护圈平面与晶片平面不平行的倾斜。这种系统和方法中,护圈可以相对晶片平面运动,但相对运动受到限制。相对运动方向限制为垂直于晶片平面和载体平面的方向。结果,为了抛光晶片,晶片平面和护圈平面可以共平面。而且,在环绕晶片和护圈周边(即,环绕载体旋转轴)在不同角度希望的外露值保持相同。因此,护圈的优点是保持护圈相对晶片的有效运动而不会出现不均匀的外露或缺乏共平面引起的问题。

为了能总体了解本发明,以下详细描述了本发明的各种具体细节。但是,本行业的技术人员应了解,没有这些细节的一部分或全部也能实施本发明。为了不使本发明难以理解,在其他的例子中不描述那些公知的工艺操作。

参见图1和2,它们示意性示出按本发明的一个实施例,包括CMP系统200。图1和2所示的实施例包括用环形带204构成的抛光头202,用于抛光安装在晶片载体212的晶片载体表面210上的晶片208的露出表面206。晶片208例如是上述的任何晶片。抛光头202设计成用带204抛光晶片208的表面206。带204可以用CMP材料,固定的研磨垫材料等构成。总之,能达到要求的抛光水平和精度的任何研磨垫材料均可以用来构成带204。在优选实施例中,例如,带204可以有不锈钢芯和IC1000抛光垫。

抛光带204对晶片208执行CMP,为此,通过隔开的驱动轮216线性运动(见箭头214所示)。驱动轮216使带204相对主轴220的旋转轴218运动。主轴220既绕轴218旋转还平行于轴210被推向带204。参见图3,主轴220用万向架组件222固定到晶片载体212上,万向架组件222允许晶片载体212运动,使载体旋转轴224相对于主轴218处于一定角度,或相对主轴218倾斜(见图3)。主轴220将晶片载体212推向带。随后,执行CMP操作,用抛光力(见图1中的箭头225所示)对着带204推动安装在晶片载体表面210上的晶片208的露出表面206。用带板204p支撑带204以抵抗抛光力225。护圈226可运动地安装在晶片载体212上。护圈226可运动,以露出晶片208的周围边缘208E的一部分(见图4A)。周围边缘208E的露出部分叫做‘外露’227,图4A显示出外露227的最大值。护圈226可以从载体212运动到零外露抛光位置(见图4B和4C)。在零外露位置没有晶片208的边缘208 E的露出部分(即无外露227)。图4B和4C中,内周边边缘226I包围晶片208的边缘208E,以对抗由带204个施加在晶片208的表面206上的摩擦抛光力(见图1中箭头228所示)来固定其中心位于轴224上的晶片208。如图4D所示,护圈226可以进一步远离载体212,使由环226的表面233确定的平面232位于晶片208的露出表面206确定的平面234以外的位置。以便容易地将晶片208固定到载体212上,这被称为护圈226的晶片固定位置。

直线轴承组件230(见图1中虚线所示)设置在护圈226与晶片载体212之间,以将护圈相对载体212的运动限制为平行于载体轴224和平行于晶片208的对称(或旋转)轴231的运动。这种限制确保护圈226的表面确定的平面232,安装在晶片载体表面210上的晶片208的露出的晶片表面206确定的平面,和其上安装有晶片208的表面210确定的平面236之间平行。抛光期间,这种限制确保平面232和234的共平面。由于万向架组件222允许晶片载体212运动和使载体旋转轴224位于与主轴218倾斜的位置(见图3),因此,不仅护圈平面232和晶片平面234以及晶片载体表面平面236可相互平行运动,而且还平行于晶片表面206所接合的带204的部分确定的平面238和护圈表面233。由直线轴承组件230实现运动限制,因此,限制了由万向架组件222允许的运动。

如上所述,主轴平行于轴218被推向带204。由于背面板204P的支撑,带204抵抗推动和施加到露出的晶片表面206上的力F1(见图3)及推动和施加到露出的环表面233上的力F2。护圈226安装在晶片载体212上,直线轴承组件230将护圈226的运动限制为平行于载体212的旋转轴224的运动,所以力F1和F2平行,并平行于轴224。用测力传感器240测这些力F1和F2组合和这些力F1和F2的平行于主轴218的分量FC(图1中虚线所示)。响应测到的分量FC而来自测力传感器240的信号用于控制将主轴推向载体212的力。

参见图3和6,图中显示主轴220的轴218。主轴220可以包括常规的凸轮操作的连接件或基座242。基座242按公知的方式固定到主轴220的另一连接件(没有显示),使基座242接纳用于CMP操作的旋转和推动。基座242设置一台肩244和一凸缘246。凸缘246被切去以形成接纳测力传感器240的阶梯形凹腔248。测力传感器240可以是标准应变仪,例如,Transducer Techniques of Temecula,CA销售的LPU-500-LRC型标准应变仪。测力传感器240的测力范围是0-500磅。更优选地,更精确的负载测量范围是0-400磅。测力传感器240用螺栓250固定到基座242(见图6)。测力传感器240具有配置成附着到万向架组件222的第一万向架元件或球形万向架承窝254的输入,或传感器尖252。承窝254接纳第二万向架元件或万向架球256。球256固定到凹腔258中的晶片载体212。凹腔248和258相对,而且构成为能使晶片载体表面210非常靠近输入252(见图3中尺寸260)。而且,如下述的,万向架组件222在凹腔248和258之间设置最小数量的机械组件。按此方式可以减小晶片载体212与测力传感器240之间个摩擦损耗,能更精确地测量力FC。如下所述,校准操作确定对应施加到线性马达300的各种致动压力PB(见图4)的护圈226的力FR(见图3和14)的值。

主轴轴线218对准承窝254的中心轴262(图6),球256相对承窝254的容许的运动(称作万向架转动)允许晶片载体的中心轴224和球256的轴(即与载体轴224的共轴)相对承窝轴262和主轴轴线218运动。在基座242与晶片载体212之间设置间隔266(例如,空气间隙),以允许万向架转动。间隙266的尺寸可以从0.100英寸到0.050英寸。力F1和F2的力分量FC从晶片载体212传送到球256并传送到承窝254进行传送到到输入252,以激励测力传感器240。

参见图3,6和7,图示的晶片载体212具有其直径268等于晶片直径(例如,约200或300mm)的晶片载体表面210。该表面210与凹腔258相对。邻接载体212的外边缘270并在相隔约90度的位置从载体212向外和向上延伸出调整片或安装部分272,如图所示。调整片272在护圈基座274和护圈226上延伸。

图7显示与各个调整片272中设置的各个螺孔278对准的主轴基座242中设置的3个孔276中的一个孔。每个孔276配置成其直径大于旋进各个螺孔278中的各个螺钉280的直径。更大的直径提供的空间允许万向架转动,各个螺栓头282保持晶片载体212连接到主轴基座242。此外,图7显示3组相对的孔284。基座242的每个孔284S接纳相应的驱动销286,驱动销286跨过间隔266延伸进接纳在一个孔284C中的圆锥形轴承288中。由于载体212可以按万向架转动方式运动时,轴承288和驱动销286的形状避免干扰万向架转动。

图4A显示在调整片272中(见290T)和在护圈基座274中(见290B)4组相对的对准孔290中的一组。调整片272的每个孔290T配置成接纳螺栓292(有垫圈294)和弹簧296。护圈基座274的每个孔290B配置成接纳螺栓292的螺纹端。在孔290T中设置台肩298,使弹簧296在台肩298与垫圈294之间压缩。螺栓292旋进护圈基座274的螺孔290B,压缩的弹簧296在图4A中向上推螺栓292,从而向上拉基座274和护圈226,使基座274正常接触调整片272。参见图8,图8显示基座274和护圈226的一部分,基座274和护圈226用螺栓315栓在一起,并作为一个单元一起运动。

图4A显示基座274和调整片272接触,护圈226的平面232比晶片平面234更靠近调整片(虚线所示)。在该位置,用具有最大正值的尺寸331表示外露227的值最大或完全。尺寸331的最大值例如是晶片208的厚度的一半。相反,图4B和4C显示具有最小值或零值的外露227,晶片平面234与护圈平面232共平面。

为了提供护圈226的运动(例如,改变外露227的值)在调整片272的环形部分302与护圈基座274之间安装直线马达300。优选以密封腔形式设置直线马达300,更优选的是,以气动马达或机电单元的形式设置直线马达300。显示的最优选的直线马达300包括经进口308提供充气动流体(见图3箭头306)的气动气囊304。如图3,4A和4B所示,护圈基座274设有用于接纳气囊304的环形凹槽310。根据气囊304的所需的行程量,通过在不同压力PB下向气囊300供给流体306致动直线马达300。如果有的话,该行程反过来提供外露227的具体量或具体值(图4A)。图4D显示气囊304的最大行程,例如,平行于轴224测量到的气囊304的最大行程是0.050英寸。该最大行程是是从图4A所示的位置开始(具有最大的外露227),与晶片208的垂直尺寸相比,它可以是0.030英寸。

为了进行描述,载体212可以说是按垂直方向固定,因此,当流体306引入气囊304时,气囊304将从图4A所示的完全外露位置向下推护圈基座274。向下运动的量对应于引入气囊304的流体306(图14)的压力PB的量。因此,气囊将使护圈基座274和护圈226相对于设置在晶片载体表面210上的晶片208向下运动(在本例中)。引入气囊304的流体306的压力PB可以例如是许多压力中之一。通常,在最初的测试中,可将压力PB选择成将护圈226从全外露位置(图4A)开始经过外露227为正值的多个外露位置之一运动到图4B和4C所示的零外露位置。可以选择压力PB的更高值以进一步向下运动护圈226到图4D所示的晶片安装位置。压力PB的范围可以从0(在图4A所示的最大外露位置)到约15psi,例如,在图4D所示的晶片安装位置中,压力PB的范围是7-10psi。

在晶片208的抛光过程中,抛光位置(0外露)是护圈226的所需位置。而且,在图4B和4C的抛光位置中,由于直线轴承组件230的作用,晶片平面234和护圈232是共平面,在晶片208的圆周周围的外露227全部是0值。结果,当带204按箭头214的方向运动时(图1),护圈232不会相对于轴承224任意倾斜。因此,护圈226不会掘入带204中。而且,带204的一部分将首先接触并横跨护圈226。这种接触和横跨将引起带204的一部分的动力状态,例如,假设带204将具有波形外形。但是,带204的一部分连续横跨护圈226将倾向于允许该波形外形减弱。因此,当带204的一部分达到晶片208的外边缘时,带204将比较平坦,而没有波形外形。而且,由于直线轴承组件230的操作,使护圈226的平面和晶片平面234共平面,当带204的一部分从护圈226跨到晶片208的边缘上时,带204的一部分具有最小的干扰。这种干扰比上述的护圈平面232和晶片平面234的不共平面关系引起的干扰显著地小。因此,带204的较平坦部分或平面部分更容易按需要的较平坦(或平面)的轮廓开始抛光晶片表面。

如上述的,四个直线轴承组件230限制护圈226的运动,因而,护圈226的平面232与晶片208的平面234和载体表面210的平面236保持平行。图3和5显示一个直线轴承组件230。每个直线轴承组件230包括设有线型球轴承组件321的主轴承座320。线型球轴承组件321包括接纳固定在保持架323中的一组轴承球322的内轴承座321H。轴承球322接纳一轴承轴326,轴承轴326的尺寸可以提供与轴承球322的压配合,以预加载轴承球322。线型球轴承组件321可以是例如是由RBM(Ringwood,New Jersey)提供的以商标ROTOLIN销售的型号为ML500-875的直线轴承。

例如,轴326经硬化处理到至少Rc(洛氏硬度)60的程度,并研磨达到光洁度至少是10微英寸。适合的轴承球322的内径例如是1/2英寸,长度是英寸。每个直线轴承组件321在底部324有开口,以接纳匹配的轴承轴326,适合的轴326的外径刚好略小于约0.500英寸(正0.000和负0.0002英寸)以压配合在轴承球322内。轴326的长度是约英寸。保持架323在平行于轴218的方向的长度323L小于内轴承座321H的尺寸321HD,而且,长度323L与内轴承座321H的尺寸321HD之比是3/7。尺寸321HD的大小根据直线轴承组件321中的轴326的所需运动量来选择。每个轴承座320从一个调整片向上延伸,并用螺栓328固定到所述调整片。每个轴326从用螺栓328固定的护圈基座274向上延伸。

当轴326随着护圈326的运动而运动时,轴承球322紧密地引导轴326。轴承球322允许轴326根据上述护圈226相对载体212的有限运动进行有限的运动,即平行于载体轴224和平行于晶片208的对称轴231的运动。轴326这样运动时轴承球322靠着内轴承座321H滚动,使保持架323按轴326的运动方向运动。内轴承座321H与保持架323的上述相对尺寸允许保持架323的这种运动。这种有限运动确保平面232和平面234和平面236之间的平行度,并为抛光提供了平面232和234的共平面性。如上所述,直线轴承组件321提供的运动限制限制了万向架组件222允许的运动。通过这种方式,位于内轴承座321H的相对端的防止外部物质进入内轴承座321H的密封块325促进直线轴承组件321按该方式连续操作。

图9显示包括直线轴承组件230的矩阵332时的直线轴承组件230。矩阵332配置成使各个单个的直线轴承组件321的操作分成多个部分,这些部分在轴231的方向具有短长度和相对晶片208的直径(例如,200mm或300mm)小的直径。而且,这样分割使多个直线轴承组件230按均匀的间隔位于一圆环形路径的周围(虚线334所示)。按该方式,当晶片载体212旋转时,例如,这些单个的直线轴承组件230快速连续地位于带204上。图9还显示出护圈基座274周围的用于固定组装有护圈226的基座274的8个螺栓315中均匀间隔的6个。对图4A予以补充,图9还显示出4个螺栓292中的一个,在4个调整片272中的每个调整片中设置有弹簧,以保持基座274对着调整片274偏置,以及在直线马达300的气囊304受压时弹性释放基座274和护圈226。

图9还显示连接到直线马达300的入口处的气动轴承座340。气动轴承座340延伸到主轴220,用于连接到压缩流体源306,例如,压缩空气源。

图10显示出包含晶片载体表面210的晶片载体212的底。表面210设置有均匀隔开的孔344,这些孔被供应氮气(N2)或者连接到真空源(未示出)。图6显示具有气动连接件347的孔口346,气动连接件连接到多个三通管348之一,这些三通管348用作将氮气(N2)或真空从主轴220分配到孔344的支管。

图7显示出连接到测力传感器240的放大器352,以将放大后的输出供给电力连接件354。连接件354连接到经主轴基座242延伸到控制电路(未示出)的导体。

参见图11,图示的本发明的方法包括将护圈226的露出表面(或环表面)233与晶片载体表面210对准的操作流程图400。晶片载体表面210也可以叫做晶片接合表面,在化学机械抛光操作过程中可以进行对准。操作流程图400包括将晶片接合表面安装到旋转轴231上的操作402。操作402例如可以包括晶片载体212安装在主轴基座242上。方法进行到操作404,将护圈226安装到晶片接合表面210并用于相对晶片接合表面210和相对旋转轴231运动。这种安装使护圈226可自由地平行于旋转轴运动,和不平行于旋转轴231运动,还可以设置螺栓250。方法进行到操作406,阻止安装的护圈226除了平行于旋转轴的运动之外的其他自由运动。用4个直线轴承组件230实现这种阻止。阻止自由运动时,直线轴承组件230只允许护圈226运动,使护圈226的表面233保持与表面210平行。由于由晶片载体212承载的晶片20g,且晶片208具有相互平行的侧面,所以,护圈表面233也与晶片208的露出表面206平行或共平面。

现在描述按本发明另一技术方案的图12所示的流程410。方法从操作412开始,其中,载体212的晶片接合表面210和护圈表面233被推向带214。晶片208和护圈26接触带214。推动(经晶片208)在晶片接合表面210上提供力F1和在护圈226(例如,表面233)上提供力F2。方法进行到从晶片接合表面210传送力F1和从护圈表面233传送力F2到载体212的操作414。例如,传送操作414用作用到基座274上的护圈226执行,基座再作用到载体212的调整片272上。F1和F2之和包括平行于轴218的力分量FC。然后,方法进行到测量传送到载体212的各个力F1和F2的操作416。用测力传感器240进行这种测量,测量平行于轴218的力分量FC的值。

现在结合图13所示的流程图420描述本发明方法的另一方面。该方法可以用来校准护圈226,由于马达300的作用,所以护圈226可以称作“主动”护圈。护圈226也有环表面233,在化学机械抛光操作中护圈226可以相对晶片接合表面210运动,其中,环表面233接触带204的上表面,或抛光表面(它确定图1所示的平面238)。该方法从将晶片接合表面210安装到旋转轴224上的操作422开始。方法进行到操作423,将护圈226安装到晶片接合表面210上,并使护圈226可相对晶片接合表面210和旋转轴224运动,从而相对于旋转轴224自由地平行或不平行地运动。方法进行到操作424,阻止安装的护圈226与旋转轴224的不平行的运动。如上所述,可以用4个直线轴承组件230实现阻止。阻止这种自由运动中,直线轴承组件230只允许护圈226运动,使护圈226的表面233保持平行于表面210。方法进行到操作425,沿轴218固定主轴220的位置。方法进行到操作426,将护圈226放置成与校准装置或测力装置接触。测力装置可以是类似于测力传感器240发标准测力传感器(未示出),并具有环形力传感器板427(图3),环形力传感器板427配置成与护圈接触而不与晶片208或表面210接触。方法进行到操作428,给直线马达300施加各种输入压力PB,以使气囊304对着标准装置的力传感器板427轴向向下(按轴224的方向)推动护圈226。方法进行到操作429,其中,对多个不同输入中的每个输入(例如,供给气囊304的空气的多个不同压力PB中的每个压力),测力装置测量由护圈226施加的力FR的值(图3)。已知护圈226的面积,力FR(图14)可以按单位磅/平方英寸换算成护圈上的护圈压力PR(图14)。通过该流程图420的方法,操作428通过准备一个标准曲线图432(图14)来完成,校准曲线图432在一个轴上标示这种护圈力FR(图14),在另一个轴上标示出对应的不同输入(加到气囊304的压力PB)的其他轴上,它们每个都是个曲线护圈压力PR的函数。参见图14,这些压力PB标示在左边轴上,换算成压力(根据力FR除以护圈226的面积)之前的力FR标示在右边轴上。

按本发明方法的另一方面,标准曲线432可以用于图15所示流程440中的下一个实际的抛光操作。操作442根据对下一个抛光操作的抛光工艺规程选择要供给气囊304的压力PB。方法进行到操作443,其中,根据校准曲线432,用选择的压力PB选择带204上的护圈226的对应的力FR(图3和14中显示的)。力FR有对应的反力F2。方法进行到操作444,操作444要按已知的工艺规程执行。在该工艺规程中,为了便于描述而被称作晶片向下力FWD的抛光力(没有显示)规定用于下一抛光操作。晶片向下力FWD是指没有护圈226而使图2和3中的主轴220正常向下将晶片208推向带204进行抛光的力。但是,由于护圈226也接触带204,施加力FRR,和接收反力F2(图3),所以用于正常向下推动主轴220的这种晶片向下力FDW不是晶片208对着带204施加的力。而上述的力FC具有两个分量F1和F2,其中只有分量F1对应晶片208与带204的抛光表面之间的抛光力(或晶片向下力FWD)。在操作444中,护圈226的力FR  到从工艺规程中导出的该晶片向下(正常)力FDW。按该方式操作444提供大于不用护圈226的正常晶片向下力FDW的主轴220的总向下力的值。因此,用大小等于包括力F1和F2的力FC而方向与之相反的力向下推动主轴220。

按本发明方法的另一方面可用于减小晶片208的化学机械抛光的边缘部分452的边缘轮廓(图8中的箭头450指示的),和晶片208的化学机械抛光后的中心部分(用方块456指示)的中心轮廓(图8中的箭头454指示的)之间的差别。如图8所示,边缘轮廓450和中心轮廓454通常具有与本发明得到的结果相同的相同的轮廓。另一方面,图17A和17B显示已经用设置成提供0.009英寸的外露的护圈抛光的典型的晶片208的多个部分。这种护圈没有设置直线轴承组件230。图示的多个部分包括晶片208的化学机械抛光的边缘部分452p的边缘轮廓(图17A中的箭头450p指示的),和晶片208的化学机械抛光后的中心部分(用括号456p指示)的中心轮廓(图17B中箭头454p指示的)。图17B显示具有某些波纹形状的轮廓454p,用于表示轮廓454p的高度有3-5%的变化(这种轮廓通常是可以接受的轮廓)。与此相比,图17A显示具有陡台阶形457的边缘轮廓450p,台阶形457表示边缘轮廓454p的高度有大于3-5%的变化。这种台阶形457和相应的增加的变化是不能接收的边缘轮廓。边缘轮廓450p可以由带204和晶片边缘部分452p的最初接触所引起的带204的动力造成的。在带204接触晶片208的边缘部分450p之前,由于提供外露0.009英寸的护圈不接触带204,所以,这种动力不会消失。而且,前护圈的上述倾斜(引起晶片208圆周周围的外露值不同)是不理想的,因为,它们不受控制,而且在CMP操作中引起问题。一种类型的问题是不能接受的边缘轮廓450p。

44另一方面,如上述的,由于带204的一部分首先接触本发明的护圈226,且由于在抛光中护圈226与晶片208的露出表面是共平面的,由最初接触护圈226的带204的一部分引起的带204的一部分的动力消失,随着带204的一部分前进通过护圈226并运动到晶片208的边缘上,带204的一部分基本上处于稳定状态条件下。稳定状态条件下,带204倾向于使抛光边缘轮廓452和中心轮廓454的高度只变化3-5%,在每种情况下,没有例如图17A所示的不能接受的陡台阶形,(例如457)。

如图16所示流程460中示出按本发明的方法的另一方面。方法包括操作462,将晶片208安装在晶片载体212的载体表面210上,使晶片轴231相对于晶片主轴220的主轴线218可全方位运动。方法进行到操作464,通过使护圈226可运动地安装在晶片载体212上并可相对晶片载体212运动,以将载体表面210上的晶片208的运动限制在垂直于晶片轴231的方向。提供外露227可以进行限制操作466。方法进行到操作466,其中,分别在固定操作462和限制操作464中,阻止护圈226不平行于晶片轴231的相对运动。通过配置直线轴承组件230的多个元件执行阻止操作466,因而只允许本晶片载体212和护圈226之间的运动的方向平行晶片轴231。阻止操作466还可包括将直线轴承元件安装定到各个晶片载体212和护圈226上。

应了解,引起边缘轮廓450p和中心轮廓454p之间的差别的原因可能是,晶片208的露出的要抛光表面206确定的晶片平面234与护圈226的露出的抛光元件接合表面233确定的护圈平面232不共平面所致。将晶片208安装到载体表面210的操作462使得晶片平面234可相对于主轴轴线218到处运动,并产生了这种不共平面。阻止护圈226不平行于晶片轴231的相对运动的操作466启动气囊304的操作,以使抛光中晶片平面234和护圈平面232达到理想的共平面(图4B),因此,消除了边缘轮廓450P与中心轮廓454p之间的差别。

尽管为了清楚理解本发明,对本发明作了某些详细的描述,但是,在不脱离所附权利要求书界定的本发明的范围内,还可以进行某些变化和改进。因此,本发明的实施例只是用于说明而不是限制性的。本发明不限于这里描述的细节,在所附权利要求书及其等效物界定的范围内还会有各种改进。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号