首页> 外文OA文献 >Characterizing InternetWorm Spatial-Temporal Infection Structures
【2h】

Characterizing InternetWorm Spatial-Temporal Infection Structures

机译:表征InternetWorm时空感染结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g., patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.
机译:自1988年发布Morris蠕虫以来,Internet蠕虫仍然是最主要的安全威胁之一。例如,Conficker蠕虫在2009年初感染了9到1500万台计算机,并关闭了一些重要的政府和医疗网络的服务。此外,它构建了一个庞大的对等(P2P)僵尸网络。僵尸网络是由攻击者控制的僵尸网络,可发起协同攻击。近年来,僵尸网络已成为互联网的头号威胁。这项研究的目的是表征Internet蠕虫的时空感染结构,并将这些观察结果用于研究由蠕虫感染形成的基于P2P的僵尸网络。首先,我们推断Internet蠕虫感染结构的时间特征,即主机感染时间和蠕虫感染顺序,从而查明患者为零或最初感染的主机。具体来说,我们对Darknet观测值应用统计估计技术。我们通过分析和经验证明,我们提出的估计器可以显着提高推理准确性。其次,我们揭示了Internet蠕虫感染结构的两个关键空间特征,即子代数和由蠕虫感染形成的底层树形拓扑的生成。具体来说,我们应用概率建模方法和顺序增长模型。我们通过分析和经验证明,孩子的数量渐近地具有参数为0.5的几何分布,并且代的生成遵循泊松分布。最后,我们评估了由蠕虫感染形成的基于P2P的僵尸网络中的僵尸程序检测策略和用户防御的效果。具体来说,我们应用对子代数量的观察,并从分析和经验上证明,针对具有最大子代数量的节点的目标检测是暴露机器人的有效方法。但是,我们还指出,未来的僵尸网络可能会自动停止扫描以削弱目标检测,而不会大大降低蠕虫感染的速度。然后,我们扩展了蠕虫的空间感染结构,并从经验上证明了用户防御(例如打补丁或清理)可以显着减轻基于P2P的僵尸网络的健壮性和有效性。为了反击,我们评估了未来僵尸网络的一种简单措施,该措施可以通过蠕虫重新感染来增强拓扑的鲁棒性。

著录项

  • 作者

    Wang Qian;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号