首页> 外文期刊>Neurocomputing >Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy
【24h】

Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy

机译:时空排列熵表征失神发作脑电图的动力学

获取原文
获取原文并翻译 | 示例

摘要

Characterizing transient brain dynamics prior to seizures is a main challenge in absence epilepsy study. As brain is a chaos dynamical system, many complexity based methods have been used to track the dynamical changes of absence seizure EEG. However, most of these methods treat multichannel EEG recordings as a set of individual time series, which will inevitably lead to the loss of crucial cross-channel correlation in the epileptic network. Recently, a spatial-temporal permutation entropy method called multi-variate multiscale permutation entropy (MMPE) was proposed to measure the complexity of multichannel data. In this study, MMPE was applied to multichannel EEG for characterizing dynamics of absence seizure. It was found that the pre-ictal EEG exhibited a significant lower MMPE value than interictal EEG, and a significant higher MMPE value than the ictal EEG, indicating that the complexity of multichannel EEG decreased in the transition of brain activities. This finding confirmed the existence of a pre-seizure state in absence epilepsy. The identification ability of MMPE was tested against its original univariate complexity measures: permutation entropy (PE) and multiscale permutation entropy (MSPE), and another multivariate multiscale entropy: multivariate multiscale sample entropy (MMSE). After evaluating the performance by four classifiers (Decision Tree, K-Nearest Neighbor, Discriminant Analysis, Support Vector Machine), MMPE can achieve accuracy of 87.2% at least, which is about 15%, 12%, and 10% higher than that of PE, MSPE and MMSE. Hence, this work supports the view that EEG has a detectable change prior to an absence seizure, and MMPE could be considered as a candidate precursor of the impending absence seizures. (C) 2017 Elsevier B.V. All rights reserved.
机译:在缺乏癫痫研究中,表征癫痫发作之前短暂的脑动力是一项主要挑战。由于大脑是一个混沌的动力系统,因此已经使用了许多基于复杂性的方法来跟踪失神发作性脑电图的动态变化。但是,大多数这些方法将多通道EEG记录视为一组单独的时间序列,这将不可避免地导致癫痫网络中关键的跨通道相关性丢失。最近,提出了一种时空置换熵方法,称为多变量多尺度置换熵(MMPE),用于测量多通道数据的复杂性。在这项研究中,MMPE被应用于多通道脑电图以表征失神发作的动力学。结果发现,发作前脑电图显示的MMPE值明显低于发作间脑电图,而MMPE值显着高于发作前脑电图,表明多通道脑电图的复杂性在脑活动的转变中降低了。这一发现证实了在没有癫痫的情况下存在癫痫发作前状态。相对于其原始的单变量复杂性度量测试了MMPE的识别能力:排列熵(PE)和多尺度排列熵(MSPE),以及另一个多元多尺度熵:多元多尺度样本熵(MMSE)。在通过四个分类器(决策树,K最近邻,判别分析,支持向量机)评估性能后,MMPE至少可以达到87.2%的精度,分别比MMPE的精度高15%,12%和10%。 PE,MSPE和MMSE。因此,这项工作支持以下观点:脑电图在癫痫发作之前有可检测的变化,而MMPE可被视为即将发作的癫痫发作的候选先兆。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第31期|577-585|共9页
  • 作者单位

    Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

    Tianjin Univ Technol, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China;

    Peking Univ, Peoples Hosp, Dept Neurol, Beijing 100044, Peoples R China;

    Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Absence epilepsy; EEG; Permutation entropy; Sample entropy; Multivariate multiscale entropy; Classification;

    机译:无癫痫;脑电图;置换熵;样本熵;多元多尺度熵;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号