首页> 外文OA文献 >A gradient optimization approach to adaptive multi-robot control
【2h】

A gradient optimization approach to adaptive multi-robot control

机译:一种自适应多机器人控制的梯度优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis proposes a unified approach for controlling a group of robots to reach a goal configuration in a decentralized fashion. As a motivating example, robots are controlled to spread out over an environment to provide sensor coverage. This example gives rise to a cost function that is shown to be of a surprisingly general nature. By changing a single free parameter, the cost function captures a variety of different multi-robot objectives which were previously seen as unrelated. Stable, distributed controllers are generated by taking the gradient of this cost function. Two fundamental classes of multi-robot behaviors are delineated based on the convexity of the underlying cost function. Convex cost functions lead to consensus (all robots move to the same position), while any other behavior requires a nonconvex cost function. The multi-robot controllers are then augmented with a stable on-line learning mechanism to adapt to unknown features in the environment. In a sensor coverage application, this allows robots to learn where in the environment they are most needed, and to aggregate in those areas. The learning mechanism uses communication between neighboring robots to enable distributed learning over the multi-robot system in a provably convergent way. Three multi-robot controllers are then implemented on three different robot platforms. Firstly, a controller for deploying robots in an environment to provide sensor coverage is implemented on a group of 16 mobile robots.
机译:本文提出了一种统一的方法来控制一组机器人以分散的方式达到目标配置。作为一个激励性的例子,控制机器人在整个环境中分布以提供传感器覆盖范围。该示例产生了成本函数,该成本函数显示出令人惊讶的一般性质。通过更改单个自由参数,成本函数可以捕获以前被视为无关的各种不同的多机器人目标。通过采用该成本函数的梯度,可以生成稳定的分布式控制器。基于基本成本函数的凸度,描绘了两种基本的多机器人行为类别。凸成本函数导致共识(所有机器人都移到同一位置),而其他任何行为都需要非凸成本函数。然后,通过稳定的在线学习机制扩展多机器人控制器,以适应环境中的未知特征。在传感器覆盖率应用程序中,这使机器人可以了解环境中最需要它们的位置,并在这些区域中进行汇总。学习机制使用相邻机器人之间的通信来实现以可证明的收敛方式在多机器人系统上进行分布式学习。然后,在三个不同的机器人平台上实现三个多机器人控制器。首先,在一组16个移动机器人上实现了一个用于在环境中部署机器人以提供传感器覆盖范围的控制器。

著录项

  • 作者

    Schwager Mac;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号