首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Contact-Force Distribution Optimization and Control for Quadruped Robots Using Both Gradient and Adaptive Neural Networks
【24h】

Contact-Force Distribution Optimization and Control for Quadruped Robots Using Both Gradient and Adaptive Neural Networks

机译:基于梯度和自适应神经网络的四足机器人接触力分配优化与控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
机译:本文研究了四足机器人在外部干扰力作用下的最佳脚力分布和控制。首先,我们制定了四足机器人的约束动力学,并得出了运动/力的降阶动力学模型。考虑在四足机器人上使用外部扳手;四足机器人的支撑腿上所需的力和力矩的分布被视为尖端力分布,并用于平衡外部扳手。然后,采用梯度神经网络来处理优化后的目标函数,该目标函数公式化为在受到线性等式和不等式约束的情况下最小化该二次目标函数。对于获得的最佳尖端力和腿部运动,我们提出了一种基于自适应神经网络的混合运动/力控制,以补偿环境中的扰动并近似腿部关节的前馈力和阻抗。所提出的控制可以克服不确定性,包括近似误差和外部扰动。所提出控制的验证是通过仿真进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号