首页> 外文OA文献 >Methods and Tools for the Analysis, Verification and Synthesis of Genetic Logic Circuits,
【2h】

Methods and Tools for the Analysis, Verification and Synthesis of Genetic Logic Circuits,

机译:用于遗传逻辑电路分析,验证和综合的方法和工具,

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synthetic biology has emerged as an important discipline in which engineers and biologists are working together to design new and useful biological systems composed of genetic circuits. The purpose of developing genetic circuits is to carry out desired logical functions inside a living cell. This usually requires simulating the mathematical models of these genetic circuits and perceive whether or not the circuit behaves appropriately. Furthermore, synthetic biology utilizes the concepts from electronic design automation (EDA) of abstraction and automated construction to generate genetic circuits with the aim to reduce the in-vitro (wet-lab) experiments. To address this, several automated tools have been developed to improve the process of genetic design automation (GDA) with different capabilities. This thesis attempts to contribute to the advancement of GDA tools by introducing capabilities which we believe that no other existing GDA tools support. First, we introduce a user-friendly simulation tool, called D-VASim, which allows user to perform virtual laboratory experimentation by dynamically interacting with the model during runtime. This dynamic interaction with the model gives user a feeling of being in the lab performing wet-lab experiments virtually. This tool allows users to perform both deterministic and stochastic simulations. Next, this dissertation introduces a methodology to perform timing analyses of genetic logic circuits, which allows user to analyze the threshold value and propagation delays of genetic logic circuits. In this thesis, it has been demonstrated, through in-silico experimentation, that the threshold value and propagation delay plays a vital role in the correct functioning of genetic circuit. It has also been shown how some circuit parameters effect these two important design characteristics. This thesis also introduces an automated approach to analyze the behavior of genetic logic circuits from the simulation data. With this capability, the boolean logic of complex genetic circuits can be analyzed and/or verified automatically. It is also shown in this thesis that the proposed approach is effective to determine the variation in the behavior of genetic circuits when the circuit’s parameters are changed.In addition, the thesis also attempts to propose a synthesis and technology mapping tool, called GeneTech, for genetic circuits. It allows users to construct a genetic circuit by only specifying its behavior in the form of boolean expression. For technology mapping, this tool uses a gates library developed by the collective efforts of the researchers at MIT and Boston universities. It is shown experimentally that the tool is able to provide all feasible solutions, containing different genetic components, to achieve the specified boolean behavior. Finally, it has been shown how D-VASim can be used along with other tools for useful purposes, like model checking. With respect to this, an experimental workflow is proposed for checking genetic circuits using the statistical model checking (SMC) utility of the Uppaal tool and the timing analysis capability of D-VASim. We further demonstrated how the reliability of a simulation can be improved by using the real parameter values. In this regard, the relationship between the simulation parameters and real parameters have been derived.
机译:合成生物学已经成为一门重要的学科,工程师和生物学家正在其中进行合作,以设计由遗传电路组成的新的有用的生物系统。发展遗传回路的目的是在活细胞内执行所需的逻辑功能。这通常需要模拟这些遗传回路的数学模型,并了解回路是否运行正常。此外,合成生物学利用电子设计自动化(EDA)的抽象概念和自动构建的概念来生成遗传电路,以减少体外(湿实验室)实验。为了解决这个问题,已经开发了几种自动化工具来改进具有不同功能的基因设计自动化(GDA)的过程。本文试图通过引入我们认为其他现有GDA工具均不支持的功能为GDA工具的发展做出贡献。首先,我们引入了一个用户友好的仿真工具D-VASim,该工具允许用户通过在运行时与模型进行动态交互来执行虚拟实验室实验。与模型的这种动态交互使用户有一种在实验室中进行虚拟实验室实验的感觉。该工具允许用户执行确定性和随机模拟。接下来,本文介绍了一种对遗传逻辑电路进行时序分析的方法,使用户能够分析遗传逻辑电路的阈值和传播延迟。本文通过计算机模拟实验证明,阈值和传播延迟在遗传电路的正确运行中起着至关重要的作用。还显示了一些电路参数如何影响这两个重要的设计特性。本文还介绍了一种从仿真数据中分析遗传逻辑电路行为的自动化方法。利用此功能,可以自动分析和/或验证复杂遗传电路的布尔逻辑。本文还表明,该方法可有效地确定改变电路参数时遗传电路行为的变化。此外,本文还尝试提出一种名为GeneTech的综合和技术映射工具,用于基因回路。它允许用户仅通过以布尔表达式的形式指定其行为来构建遗传电路。对于技术制图,该工具使用由MIT和波士顿大学的研究人员共同开发的盖茨库。实验表明,该工具能够提供所有可行的解决方案,其中包含不同的遗传成分,以实现指定的布尔行为。最后,已经展示了如何将D-VASim与其他工具一起用于有用的目的,例如模型检查。对此,提出了一个实验工作流,该工作流使用Uppaal工具的统计模型检查(SMC)实用程序和D-VASim的时序分析功能来检查遗传电路。我们进一步演示了如何通过使用实际参数值来提高仿真的可靠性。在这方面,已经得出了仿真参数和实际参数之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号