In the present work, a manufacturing process for transferring nano-structures from a glass wafer, to a double-curved insert for injection moulding is demonstrated. A nano-structure consisting of sinusoidal cross-gratings with a period of 426 nm is successfully transferred to hemispheres on an aluminium substrate with three different radii; 500 μm, 1000 μm and 2000 μm, respectively. The nano imprint is performed using a 50 μm thick nickel foil, manufactured using electroforming. During the imprinting process, the nickel foil is stretched due to the curved surface of the aluminium substrate. Experimentally, it is possible to address this stretch by counting the periods of the cross-gratings via SEM characterization. A model for the deformation of the nickel foil during nanoimprint is developed, utilizing non-linear material and geometrical behaviour. Good agreement between measured and numerically calculated stretch ratios on the surface of the deformed nickel foil is found, and it is shown, that from the model it is also possible to predict the geometrical extend of the nano-structured area on the curved surfaces.
展开▼