首页> 外文学位 >Micromechanical modeling of the interaction of diffusion mechanisms and surface energy with nonlinear material deformation: Applications to powder densification and void growth.
【24h】

Micromechanical modeling of the interaction of diffusion mechanisms and surface energy with nonlinear material deformation: Applications to powder densification and void growth.

机译:扩散机制和表面能与非线性材料变形相互作用的微机械建模:在粉末致密化和空隙增长中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Diffusive processes coupled to nonlinear material behavior assume importance in such important technological problems as consolidation of powders, diffusive cavitation at grain-boundary interfaces, and void growth and coalescence in solids. The first three chapters of this thesis are devoted to the study of powder densification using a small-strain finite-element scheme. In the first chapter, the coupled action of stress-driven diffusion and curvature-driven diffusion over the interparticle contact areas and the pore surfaces respectively, and elasticity and power-law creep processes in the bulk of the particles is studied. Numerical results indicate that the interaction of the deformation mechanisms is very important in determining the overall densification rates of the powder aggregate, and that models that focus on a single, dominant densification mechanism underestimate the densification rate. In the second chapter, the macroscopic strain rate of a particle aggregate is obtained from an analytically-constructed and numerically-obtained potential function in terms of the applied loads, the relative density of the compact, and material parameters. The predictions of this potential agree quantitatively with experimentally obtained densification data for copper wires. The interparticle diffusion process is modified in the third chapter to account for the situation when part of the externally delivered power is expended in driving the interface reaction (addition to or removal of atoms from the interparticle boundaries). Numerical computations reproduce experimentally observed decrease in overall densification rates with increasing interface reaction strength. In order to study densification to a larger range of relative density, the densification problem is recast in finite-strain form in the fourth chapter, and it is observed that the small-strain model underestimates the relative density increase for a given amount of time.; Void growth in nonlinearly creeping solids under plane-strain conditions is studied in the fifth chapter. Numerical results reveal a rich variety of solutions; in general, void shape is controlled by the strength of the diffusion process relative to the bulk creep process, whereas void size depends critically on the surface energy of the void in relation to the void size and applied load.
机译:与非线性材料行为相关的扩散过程在诸如粉末固结,晶界界面处的扩散空化以及固体中的空洞生长和聚结等重要的技术问题中占有重要地位。本文的前三章致力于采用小应变有限元方法研究粉末的致密化。在第一章中,研究了应力驱动扩散和曲率驱动扩散分别作用于颗粒间接触区域和孔表面,以及大部分颗粒的弹性和幂律蠕变过程的耦合作用。数值结果表明,变形机制的相互作用对于确定粉末聚集体的整体致密化速率非常重要,而侧重于单一,占主导地位的致密化机理的模型会低估致密化速率。在第二章中,粒子聚集体的宏观应变率是从解析构造并通过数值方法获得的势函数中获得的,这些势函数包括施加的载荷,压坯的相对密度和材料参数。这种潜力的预测与实验获得的铜线致密化数据在数量上吻合。在第三章中对粒子间扩散过程进行了修改,以解决部分外部传递的功率用于驱动界面反应(粒子间边界上的原子增加或从中去除)时的情况。数值计算再现了实验观察到的总致密化速率随界面反应强度的增加而降低的情况。为了研究更大范围的相对密度的致密化,在第四章中以有限应变的形式重塑了致密化问题,并且观察到,小应变模型低估了给定时间内相对密度的增加。 ;第五章研究了平面应变条件下非线性蠕变固体的空洞生长。数值结果表明了各种各样的解决方案。通常,空洞的形状由扩散过程相对于整体蠕变过程的强度控制,而空洞的大小则主要取决于空洞的表面能(相对于空洞的大小和施加的载荷)。

著录项

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Applied Mechanics.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号