首页> 外文OA文献 >An ultrahigh vacuum complementary metal oxide silicon compatible nonlithographic system to fabricate nanoparticle-based devices
【2h】

An ultrahigh vacuum complementary metal oxide silicon compatible nonlithographic system to fabricate nanoparticle-based devices

机译:超高真空互补金属氧化物硅兼容的非光刻系统,用于制造基于纳米颗粒的器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus making it suitable for volume manufacturing. The system also allows the fabrication of Ohmic contacts and isolation dielectrics in an integrated manner, which is a requirement for most electronic and photonic devices. We have demonstrated the power and the flexibility of this new system for the manufacturing of nanoscale devices by implementing a variety of structures incorporating nanoparticles. Descriptions of this new fabrication system together with experimental results are presented in this article. The system explains the method of size-selected deposition of nanoparticles of any metallic, semiconducting, and (or) insulating materials on any substrate, which is very important in fabricating useful nanoparticle-baseddevices. It has also been shown that at elevated substrate temperature, a selective deposition of the nanoparticles is observed near the grain-boundary regions. However, in these natural systems, there will always be low and favorable energy states present away from the grain-boundary regions, leading to the undesirable deposition of nanoparticles in the far-grain-boundary regions, too.
机译:金属和半导体的纳米粒子有望用于实现各种具有卓越性能和新功能的光子和电子设备。但是,由于缺少适合批量生产的适当制造工艺,其成功实施受到了限制。用于制造纳米颗粒的当前技术或者是基于溶液的,因此需要复杂的表面钝化,或者在粒度和材料的选择上有严格的限制。我们已经开发了一种超高真空系统,用于实现复杂的纳米系统,该系统具有灵活性并与硅集成电路工艺兼容,因此使其适合批量生产。该系统还允许以集成方式制造欧姆接触和隔离电介质,这是大多数电子和光子设备的要求。我们已经通过实现包含纳米粒子的各种结构,证明了该新系统用于制造纳米级设备的功能和灵活性。本文介绍了这种新型制造系统以及实验结果。该系统解释了在任何衬底上按尺寸选择沉积任何金属,半导体和(或)绝缘材料的纳米颗粒的方法,这对制造有用的基于纳米颗粒的设备非常重要。还已经表明,在升高的基材温度下,在晶界区域附近观察到纳米颗粒的选择性沉积。但是,在这些自然系统中,在晶界区域之外始终存在低能量状态和有利的能量状态,这也导致了纳米粒子在远晶粒边界区域中的不良沉积。

著录项

  • 作者

    Banerjee Arghya; Das Biswajit;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号