首页> 外文OA文献 >Response of a delta-doped charge-coupled device to low energy protons and nitrogen ions
【2h】

Response of a delta-doped charge-coupled device to low energy protons and nitrogen ions

机译:δ掺杂电荷耦合器件对低能质子和氮离子的响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the results of a study of the response of a delta-doped charge-coupled device (CCD) exposed to ions with energies less than 10 keV10keV. The study of ions in the solar wind, the majority having energies in the 1–5 keV1–5keV range, has proven to be vital in understanding the solar atmosphere and the near Earth space environment. Delta-doped CCD technology has essentially removed the dead layer of the silicon detector. Using the delta-doped detector, we are able to detect H+H+ and N+N+ ions with energies ranging from 1 to 10 keV1to10keV in the laboratory. This is a remarkable improvement in the low energy detection threshold over conventional solid-state detectors, such as those used in space sensors, one example being the solar wind ion composition spectrometer (SWICS) on the Advanced Composition Explorer spacecraft, which can only detect ions with energies greater than 30 keV30keV because of the solid-state detector’s minimum energy threshold. Because this threshold is much higher than the average energy of the solar wind ions, the SWICS instrument employs a bulky high voltage postacceleration stage that accelerates ions above the 30 keV30keV detection threshold. This stage is massive, exposes the instrument to hazardous high voltages, and is therefore problematic both in terms of price and its impact on spacecraft resources. Adaptation of delta-doping technology in future space missions may be successful in reducing the need for heavy postacceleration stages allowing for miniaturization of space-borne ion detectors.
机译:我们提出的研究结果是,暴露于能量小于10keV10k​​eV的离子的掺do电荷耦合器件(CCD)的响应。研究证明太阳风中离子的能量大部分在1–5–keV1–5keV范围内,对理解太阳大气和近地空间环境至关重要。掺达Delta的CCD技术已基本消除了硅检测器的死层。使用增量掺杂检测器,我们能够在实验室中检测能量范围为1至10 keV1至10keV的H + H +和N + N +离子。与传统的固态探测器(例如空间传感器中使用的探测器)相比,这是对低能量检测阈值的显着改进,其中一个例子是Advanced Composition Explorer航天器上的太阳风离子成分光谱仪(SWICS),它只能检测离子由于固态检测器的最小能量阈值,其能量大于30 keV30keV。由于此阈值比太阳风离子的平均能量高得多,因此SWICS仪器采用了庞大的高压后加速级,该阶段可将离子加速到30 keV30keV以上的检测阈值。这个阶段很庞大,使仪器暴露在危险的高压下,因此在价格及其对航天器资源的影响方面都存在问题。在未来的太空飞行任务中采用增量掺杂技术可能会成功地减少对重型后加速级的需求,从而使星载离子检测器小型化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号