首页> 外文OA文献 >Wiener chaos expansion and numerical solutions of stochastic partial differential equations
【2h】

Wiener chaos expansion and numerical solutions of stochastic partial differential equations

机译:随机偏微分方程的Wiener混沌展开和数值解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic partial differential equations (SPDEs) are important tools in modeling complex phenomena, and they arise in many physics and engineering applications. Developing efficient numerical methods for simulating SPDEs is a very important while challenging research topic. In this thesis, we study a numerical method based on the Wiener chaos expansion (WCE) for solving SPDEs driven by Brownian motion forcing. WCE represents a stochastic solution as a spectral expansion with respect to a set of random basis. By deriving a governing equation for the expansion coefficients, we can reduce a stochastic PDE into a system of deterministic PDEs and separate the randomness from the computation. All the statistical information of the solution can be recovered from the deterministic coefficients using very simple formulae.We apply the WCE-based method to solve stochastic Burgers equations, Navier-Stokes equations and nonlinear reaction-diffusion equations with either additive or multiplicative random forcing. Our numerical results demonstrate convincingly that the new method is much more efficient and accurate than MC simulations for solutions in short to moderate time. For a class of model equations, we prove the convergence rate of the WCE method. The analysis also reveals precisely how the convergence constants depend on the size of the time intervals and the variability of the random forcing. Based on the error analysis, we design a sparse truncation strategy for the Wiener chaos expansion. The sparse truncation can reduce the dimension of the resulting PDE system substantially while retaining the same asymptotic convergence rates.For long time solutions, we propose a new computational strategy where MC simulations are used to correct the unresolved small scales in the sparse Wiener chaos solutions. Numerical experiments demonstrate that the WCE-MC hybrid method can handle SPDEs in much longer time intervals than the direct WCE method can. The new method is shown to be much more efficient than the WCE method or the MC simulation alone in relatively long time intervals. However, the limitation of this method is also pointed out.Using the sparse WCE truncation, we can resolve the probability distributions of a stochastic Burgers equation numerically and provide direct evidence for the existence of a unique stationary measure. Using the WCE-MC hybrid method, we can simulate the long time front propagation for a reaction-diffusion equation in random shear flows. Our numerical results confirm the conjecture by Jack Xin [76] that the front propagation speed obeys a quadratic enhancing law.Using the machinery we have developed for the Wiener chaos method, we resolve a few technical difficulties in solving stochastic elliptic equations by Karhunen-Loeve-based polynomial chaos method. We further derive an upscaling formulation for the elliptic system of the Wiener chaos coefficients. Eventually, we apply the upscaled Wiener chaos method for uncertainty quantification in subsurface modeling, combined with a two-stage Markov chain Monte Carlo sampling method we have developed recently.
机译:随机偏微分方程(SPDE)是对复杂现象进行建模的重要工具,它们在许多物理和工程应用中都会出现。在挑战研究主题的同时,开发有效的数值方法来模拟SPDE非常重要。在本文中,我们研究了一种基于维纳混沌扩展(WCE)的数值方法,用于求解由布朗运动强迫驱动的SPDE。 WCE将随机解表示为相对于一组随机基础的频谱扩展。通过导出膨胀系数的控制方程,我们可以将随机PDE简化为确定性PDE系统,并从计算中分离出随机性。该解决方案的所有统计信息都可以使用非常简单的公式从确定性系数中恢复。我们采用基于WCE的方法来求解具有加法或乘性随机强迫的随机Burgers方程,Navier-Stokes方程和非线性反应扩散方程。我们的数值结果令人信服地表明,对于中短时间内的解决方案,该新方法比MC仿真更有效,更准确。对于一类模型方程,我们证明了WCE方法的收敛速度。该分析还精确地揭示了收敛常数如何取决于时间间隔的大小和随机强迫的可变性。在误差分析的基础上,设计了维纳混沌扩展的稀疏截断策略。稀疏截断可以在保持相同渐近收敛速率的同时大幅减小生成的PDE系统的维数。对于长时间的解决方案,我们提出了一种新的计算策略,其中使用MC模拟来校正稀疏的Wiener混沌解决方案中未解决的小尺度。数值实验表明,与直接WCE方法相比,WCE-MC混合方法可以在更长的时间间隔内处理SPDE。在相对较长的时间间隔内,该新方法比单独的WCE方法或MC仿真要有效得多。但是,也指出了该方法的局限性。利用稀疏的WCE截断,可以数值求解随机Burgers方程的概率分布,并为存在唯一平稳测度提供直接证据。使用WCE-MC混合方法,我们可以模拟随机剪切流中反应扩散方程的长时间前沿传播。我们的数值结果证实了杰克辛[76]的猜想,即前传播速度服从二次增强定律。使用我们为维纳混沌方法开发的机械,我们解决了Karhunen-Loeve解决随机椭圆方程的一些技术难题的多项式混沌方法。我们进一步推导了维纳混沌系数的椭圆系统的放大公式。最终,我们将扩展的维纳混沌方法用于地下建模中的不确定性量化,并结合了我们最近开发的两阶段马尔可夫链蒙特卡洛采样方法。

著录项

  • 作者

    Luo Wuan;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号