首页> 外文OA文献 >Correcting instrumental variation and time-varying drift : a transfer learning approach with autoencoders
【2h】

Correcting instrumental variation and time-varying drift : a transfer learning approach with autoencoders

机译:校正乐器变化和时变漂移:使用自动编码器的转移学习方法

摘要

Electronic noses (e-noses) are instruments that can be used to measure gas samples conveniently. Based on the measured signal, the type and concentration of the gas can be predicted by pattern recognition algorithms. However, e-noses are often affected by influential factors, such as instrumental variation and time-varying drift. From the viewpoint of pattern recognition, the factors make the posterior distribution of the test data drift from that of the training data, thus will degrade the accuracy of the prediction models. In this paper, we propose drift correction autoencoder (DCAE) to address this problem. DCAE learns to model and correct the influential factors explicitly with the help of transfer samples. It generates drift-corrected and discriminative representation of the original data, which can then be applied to various prediction algorithms. We evaluate DCAE on data sets with instrumental variation and complex time-varying drift. Prediction models are trained on samples collected with one device or in the initial time period, then tested on other devices or time periods. Experimental results show that the DCAE outperforms typical drift correction algorithms and autoencoder-based transfer learning methods. It can improve the robustness of e-nose systems and greatly enhance their performance in real-world applications.
机译:电子鼻(电子鼻)是可以方便地测量气体样品的仪器。基于测量的信号,可以通过模式识别算法预测气体的类型和浓度。但是,电子噪声通常会受到影响因素的影响,例如乐器的变化和随时间变化的漂移。从模式识别的角度来看,这些因素会使测试数据的后验分布偏离训练数据的后验分布,从而降低预测模型的准确性。在本文中,我们提出了漂移校正自动编码器(DCAE)来解决此问题。 DCAE在转移样本的帮助下学会了显式地建模和校正影响因素。它生成原始数据的经过漂移校正和判别式表示,然后可以将其应用于各种预测算法。我们评估具有仪器差异和复杂时变漂移的数据集上的DCAE。在使用一个设备或在初始时间段内收集的样本上训练预测模型,然后在其他设备或时间段上进行测试。实验结果表明,DCAE优于典型的漂移校正算法和基于自动编码器的转移学习方法。它可以提高电子鼻系统的耐用性,并大大提高其在实际应用中的性能。

著录项

  • 作者

    Yan K; Zhang D;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号