首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Correcting Instrumental Variation and Time-Varying Drift Using Parallel and Serial Multitask Learning
【24h】

Correcting Instrumental Variation and Time-Varying Drift Using Parallel and Serial Multitask Learning

机译:使用并行和串行多任务学习校正仪器变化和时变漂移

获取原文
获取原文并翻译 | 示例

摘要

When instruments and sensor systems are used to measure signals, the posterior distribution of test samples often drifts from that of the training ones, which invalidates the initially trained classification or regression models. This may be caused by instrumental variation, sensor aging, and environmental change. We introduce transfer-sample-based multitask learning (TMTL) to address this problem, with a special focus on applications in machine olfaction. Data collected with each device or in each time period define a domain. Transfer samples are the same group of samples measured in every domain. They are used by our method to share knowledge across domains. Two paradigms, parallel and serial transfer, are designed to deal with different types of drift. A dynamic model strategy is proposed to predict samples with known acquisition time. Experiments on three real-world data sets confirm the efficacy of the proposed methods. They achieve good accuracy compared with traditional feature-level drift correction algorithms and typical labeled-sample-based MTL methods, with few transfer samples needed. TMTL is a practical algorithm framework which can greatly enhance the robustness of sensor systems with complex drift.
机译:当使用仪器和传感器系统测量信号时,测试样本的后验分布经常会偏离训练样本的后验分布,这会使最初训练的分类或回归模型无效。这可能是由于仪器变化,传感器老化和环境变化引起的。我们介绍了基于传输样本的多任务学习(TMTL)来解决此问题,并特别关注机器嗅觉中的应用。每个设备或每个时间段收集的数据定义一个域。转移样本是在每个域中测量的同一组样本。我们的方法使用它们来跨领域共享知识。并行传输和串行传输这两种范例旨在处理不同类型的漂移。提出了一种动态模型策略来预测已知采集时间的样本。在三个真实世界的数据集上进行的实验证实了所提出方法的有效性。与传统的特征级漂移校正算法和典型的基于标记样本的MTL方法相比,它们具有良好的准确性,而所需的转移样本却很少。 TMTL是一种实用的算法框架,可以大大增强具有复杂漂移的传感器系统的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号