首页> 外文OA文献 >The development of planar high-K/III-V p-channel MOSFETs for post-silicon CMOS
【2h】

The development of planar high-K/III-V p-channel MOSFETs for post-silicon CMOS

机译:用于后硅CMOS的平面高K / III-V p沟道MOSFET的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. ududThis Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices.ududThe parameter space in the design of the device layer structure, based aroundudthe III-V channel/barrier material options of InGaAs/InAlAs and InGaSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the InGaAs (2.1% strain) structure. ududS/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions.ududA fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (L) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm.ududFor high-k integration on GaSb, ex-situ ammonium sulphide ((NH)S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the AlO/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×10cmeV in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb.ududA number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (I=1.14mA/mm), double peaked transconductance (g=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (R=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of I (11×), g (5.5×) and R (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (L) from 1μm down to 70nm improved I (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state InGaSb-channel (I=49.4mA/mm, g=12.3mS/mm, R=31.7kΩ.μm) and InGaSb-channel (I=38mA/mm, g=11.9mS/mm, R=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
机译:常规的Si互补金属氧化物半导体(CMOS)缩放正在迅速接近其极限。逻辑器件路线图的扩展(用于将来晶体管性能的增强)需要非Si材料和新的器件架构。 III-V材料由于其优异的电子传输性能,已准备好替代10nm技术节点以外的Si作为沟道材料,以减轻由于进一步降低电源电压而使Si晶体管的性能损失,从而将逻辑电路的功耗降至最低。然而,一些关键的挑战包括高质量的电介质/ III-V栅叠层,低电阻的源/漏(S / D)技术,与Si平台的异质集成以及可行的III-V p-金属氧化物半导体领域-III-Vs可以在CMOS中使用之前,需要解决晶体管效应(MOSFET)的问题。 ud ud本论文专门针对平面III-V p-MOSFET的开发和演示,以补充n-MOSFET,从而使所有III-V CMOS技术得以实现。这项工作探索了InGaAs和InGaSb材料系统作为沟道的应用,结合Al2O3 /金属栅叠层,用于基于掩埋沟道平带器件架构的p-MOSFET开发。进行的工作包括材料开发,工艺模块开发以及集成到用于演示p通道器件的强大制造流程中。 ud ud基于 udIII-V的器件层结构设计中的参数空间系统地研究了InGaAs / InAlAs和InGaSb / AlSb的沟道/势垒材料选项,以改善空穴沟道传输。对于InGaAs(2.1%应变)结构,获得了迄今为止报道的任何InGaAs量子阱通道中最高的室温空穴迁移率433 cm / Vs。基于热退火的Au / Zn / Au金属化开发了 ud udS / D欧姆接触,并使用传输线模型测试结构进行了验证。研究了金属化厚度,扩散势垒和脱氧条件的影响。发现与InGaSb沟道结构的接触对脱氧条件敏感。 ud ud基于光刻对准的双欧姆构图方法的制造工艺实现了深亚微米栅极到源极/漏极间隙(L )缩放以最小化访问电阻,从而减轻寄生S / D串联电阻对晶体管性能的影响。已开发的工艺产生的间隙小至20nm。 ud ud为在GaSb上进行高k集成,系统地探索了在295K下进行10min的1%-22%范围的异位硫化铵处理(NH)S。用于改善AlO / GaSb界面的电性能。电学和物理特性表明,在带隙下半部,界面陷阱密度在4-10×10cmeV范围内时,1%处理最有效。进一步的研究包括在每个硫化物浓度下的额外浸没时间,以确定在GaSb上处理的表面粗糙度和蚀刻特性。 ud ud基于III-V沟道的p-MOSFET数量最多这项工作成功地展示了有希望的空穴传输和已开发工艺模块的集成。尽管同相InGaAs沟道器件显示出良好的电流调制和关断特性,但性能的几个方面都不理想。耗尽模式工作,适度的驱动电流(I = 1.14mA / mm),双峰跨导(g = 1.06mS / mm),高亚阈值摆幅(SS = 301mV / dec)和高导通电阻(R =845kΩ.μm )。尽管证明了I(11×),g(5.5×)和R(5.6×)的通态指标有了实质性的改善,但反相器件并未关闭。在反向InGaAs沟道器件中,将栅-源/漏间隙(L)从1μm缩小到70nm,可将I(72.4mA / mm)提高3.6倍,将gm(25.8mS / mm)提高4.1倍。对于InGaSb通道器件,观察到控制良好的电流调制和良好的饱和行为。在通态InGaSb通道(I = 49.4mA / mm,g = 12.3mS / mm,R =31.7kΩ.μm)和InGaSb通道(I = 38mA / mm,g = 11.9mS / mm,R = 73.5kΩ.μm)器件的性能优于InGaAs通道器件。但是,无法关闭设备。这些发现表明,与InGaAs沟道相比,基于InGaSb的III-V p-MOSFET更适合作为后Si CMOS的p沟道选择。

著录项

  • 作者

    Peralagu Uthayasankaran;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号