首页> 外文OA文献 >The Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na+ Channels
【2h】

The Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na+ Channels

机译:电压门控Na +通道利多卡因阻滞期间快速灭活门的位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channels does not involve changes in ionic current. For that reason, we employed a conformational marker for the fast-inactivation gate, the reactivity of a cysteine substituted at phenylalanine 1304 in the rat adult skeletal muscle sodium channel α subunit (rSkM1) with [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET), to determine the position of the fast-inactivation gate during lidocaine block. We found that lidocaine does not compete with fast-inactivation. Rather, it favors closure of the fast-inactivation gate in a voltage-dependent manner, causing a hyperpolarizing shift in the voltage dependence of site 1304 accessibility that parallels a shift in the steady state availability curve measured for ionic currents. More significantly, we found that the lidocaine-induced slowing of sodium channel repriming does not result from a slowing of recovery of the fast-inactivation gate, and thus that use-dependent block does not involve an accumulation of fast-inactivated channels. Based on these data, we propose a model in which transitions along the activation pathway, rather than transitions to inactivated states, play a crucial role in the mechanism of lidocaine action.
机译:利多卡因通过优先结合通常在去极化电势下填充的通道构象,并减慢去极化后Na +通道重新引发的速率,从而对电压门控的Na +通道产生电压和使用依赖性抑制。已经提出,快速灭活机制在这些过程中起关键作用。然而,由于在药物结合通道上的门控作用不涉及离子电流的变化,因此很难探究快速灭活在利多卡因作用中的确切作用。因此,我们为快速灭活门采用了构象标记,即成年骨骼肌钠通道α亚基(rSkM1)中苯丙氨酸1304处取代的半胱氨酸与[2-(三甲基铵)乙基]甲硫基磺酸盐(MTS)的反应性-ET),以确定在利多卡因阻滞期间快速灭活门的位置。我们发现利多卡因不能与快速灭活竞争。而是,它有利于以电压相关的方式关闭快速灭活栅极,从而引起站点1304可及性的电压相关性的超极化偏移,该偏移与为离子电流测量的稳态可用性曲线中的偏移平行。更重要的是,我们发现利多卡因诱导的钠通道启动减慢不是由快速灭活门的恢复减慢导致的,因此,与使用有关的阻滞不涉及快速灭活的通道的积累。基于这些数据,我们提出了一个模型,其中沿激活途径的转变而不是向失活状态的转变在利多卡因作用机理中起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号