This thesis presents a theoretical analysis of upper critical magnetic fields in quasi-one-dimensional (Q1D), layered superconductors with highly anisotropic electron spectra. It is shown quantitatively how the temperature dependence and spacial orientation of the upper critical magnetic fields, Hc₂(T) can reveal important microscopic properties of such superconductors, including the nature of their pairing symmetry. The results obtained show that highly anisotropic, layered compounds can possess exotic superconducting properties such as: non-analytical angular dependence in the upper critical fields at low temperature, the rare spin-triplet Cooper pairing, and a novel quantum limit reentrant superconducting phase occurring in Q1D compounds under ultra-high magnetic fields. For this purpose, two unconventional superconductors are examined: the highly anisotropic Q1D organic superconductor (DMET)₂I₃, and the layered transition metal oxide superconductor Li₀.₉Mo₆O₁₇. In the first case, an angular dependence of Hc₂ that varies as ϴ³/² is predicted in (DMET)₂I₃ for small angles and low temperatures, in contrast to the well-established (Ginzburg-Landau) quadratic angular dependence near the transition temperature. For Li₀.₉Mo₆O₁₇, spin-triplet pairing is shown to be the most likely scenario, supported by theoretical analysis of the recent experimental data on Hc₂(T) when the field is aligned parallel to the most conducting axis. Furthermore, in Li₀.₉Mo₆O₁₇, a novel quantum limit (QL) superconducting phase is theoretically predicted as a consequence of dimensional crossover in ultra-high magnetic field. If confirmed experimentally, the QL phase would be the first example of existence of superconductivity in magnetic fields greater than 100 Tesla, and in addition would unequivocally confirm spin-triplet Cooper pairing in Li₀.₉Mo₆O₁₇.
展开▼
机译:本文对具有高各向异性电子谱的准一维(Q1D)层状超导体中的上临界磁场进行了理论分析。定量地表明了上临界磁场Hc 2(T)的温度依赖性和空间取向如何揭示这种超导体的重要的微观性质,包括它们的配对对称性。所得结果表明,高度各向异性的层状化合物可以具有奇异的超导特性,例如:低温下的上临界场中的非解析角度依赖性,稀有的自旋三重态库珀对以及在其中发生的新的量子极限折角超导相。超强磁场下的Q1D化合物。为此目的,研究了两种非常规的超导体:高度各向异性的Q1D有机超导体(DMET)2 I 3和层状过渡金属氧化物超导体Li 3·4 Mo 3 O 4。在第一种情况下,对于小角度和低温,在(DMET)2 I 3中预测了Hc 2的角度依赖性随ϴ 3/2而变化,这与在转变温度附近公认的(金兹堡-兰道)二次角依赖性相反。对于Li 3+,Mo 3 O 4,自旋-三重态对被证明是最可能的情况,当磁场平行于最导电的轴排列时,对Hc 2(T)上最新实验数据的理论分析支持了这一点。此外,在Li·₉Mo₆O₁₇中,由于超高磁场中的尺寸交叉,理论上可以预测出一种新型的量子极限(QL)超导相。如果通过实验证实,QL相将是在大于100特斯拉的磁场中存在超导性的第一个例子,此外,它还将明确地确定Li₉.₉Mo₆O₁₇中的自旋三重库珀配对。
展开▼