首页> 外文OA文献 >走行車のタイヤ音を利用した路面状況の検出に関する研究
【2h】

走行車のタイヤ音を利用した路面状況の検出に関する研究

机译:利用行驶车辆轮胎噪声检测路面状况的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Information on road surface states is important and helpful for road users such asautomobile drivers, particularly in the snowy season. In practice, the surface statesdepend greatly on the weather, road users, location, and other relevant factors. Thisdissertation is concerned with the reliable detection of the surface states using tire noisefrom road vehicles. The tire/road noise emitted from moving vehicles variesmomentarily depending on the road surface properties. Then, it may be possible topassively and easily detect the state of the road surface: i.e., dry, wet, snowy, or otherstate. To detect tire noise, the author used a commercially available microphone as anacoustic sensor, which enabled us to easily reduce the cost and size in realizing apractical system for detecting road surface states. Several features in the frequency andthe time domain of noise signals are proposed to successfully classify the road statesinto several categories and to improve the classification accuracy by combining theindicator of the feature obtained with the standard deviation of the cumulativedistribution curves. Furthermore, this dissertation proposes a new processing methodfor automatically detecting the states of road surface. The method is based on artificialneural networks. The proposed classification is carried out in multiple neural networksusing learning vector quantization. The outcomes of the networks are then integrated bythe voting decision-making scheme. From the experimental results obtained in snowyseason demonstrated that an accuracy of approximately 90% can be attained forpredicting road surface states using only tire noise data.
机译:路面状态信息对于诸如汽车驾驶员之类的道路使用者非常重要且有帮助,特别是在下雪季节。实际上,表面状态在很大程度上取决于天气,道路使用者,位置和其他相关因素。本发明涉及利用道路车辆的轮胎噪声可靠地检测表面状态。从行驶中的车辆发出的轮胎/道路噪声会根据路面特性而瞬时变化。然后,可以被动地且容易地检测路面的状态:即干燥,潮湿,下雪或其他状态。为了检测轮胎噪声,作者使用了市售的麦克风作为声学传感器,这使我们能够轻松地实现用于检测路面状态的实用系统,从而降低成本和尺寸。提出了噪声信号的频域和时域中的几个特征,通过将获得的特征的指标与累积分布曲线的标准偏差相结合,成功地将道路状态分为几类,并提高了分类精度。此外,本文提出了一种自动检测路面状态的新方法。该方法基于人工神经网络。所提出的分类是使用学习向量量化在多个神经网络中进行的。然后,通过投票决策方案将网络的结果整合在一起。从下雪季节获得的实验结果表明,仅使用轮胎噪声数据即可预测路面状态,其准确度约为90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号