首页> 外文OA文献 >Data analysis tools and methods for DNA microarray and high-throughput sequencing data
【2h】

Data analysis tools and methods for DNA microarray and high-throughput sequencing data

机译:DNA微阵列和高通量测序数据的数据分析工具和方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization.Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given.The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.
机译:生物技术方法的最近快速发展使得能够产生大的全基因组水平的生物数据集。为了处理这些数据集,需要可靠且有效的自动化工具和方法来进行数据处理和结果解释。作为研究和处理生物数据的领域,生物信息学试图通过结合跨计算机科学,统计学,数学和工程学的方法和方法来研究和处理生物数据来满足这一需求。对生物学研究人员本身可能没有强大的统计或计算背景的工具的需求也日益增加,这要求创建具有直观用户界面,强大的分析流程以及对结果报告和可视化的高度重视的工具和管道。本文提出了几种用于分析高通量生物数据集的数据分析工具和方法。这些方法涵盖了高通量数据分析的多个方面,尽管它们原则上也适用于分析其他数据类型,但它们专门针对基因表达和基因分型数据。为了确保获得可靠可靠的结果,在各个数据分析步骤中对数据进行一致的处理非常重要。因此,还描述了健壮的数据分析工作流,将开发的工具和方法置于更广阔的背景下。正确分析方法的选择还可能取决于特定数据集的性质,并给出了选择最佳方法的指导。本论文中开发的数据分析工具,方法和工作流已用于多个研究,其中包括两个代表性的例子。在论文中。第一项研究集中于鼠睾丸的精子发生,第二项研究检查小鼠胚胎干细胞的细胞谱系特异性。

著录项

  • 作者

    Laiho Asta;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号