首页> 外文OA文献 >Experiments in Neural-Network Control of a Free-Flying Space Robot
【2h】

Experiments in Neural-Network Control of a Free-Flying Space Robot

机译:自由飞行机器人的神经网络控制实验

摘要

Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
机译:作为用于实验性自由飞行空间机器人原型的基于自适应神经网络的控制系统开发的一部分,本文确定并深入解决了四个重要的通用问题。第一个问题涉及控制系统的真实系统级设计的重要性。在此深入开发了一种新的混合策略,用于将神经网络有益地集成到整个控制系统中。神经网络控制中的第二个重要问题涉及将先验知识整合到神经网络中。在许多应用中,有可能使用常规方法获得合理准确的控制器。如果有目的地使用此先验信息来为神经网络的优化功能提供起点,那么它可以提供更快的初始学习。在解决此问题的步骤中,开发了一种新的通用全连接架构(FCA)与反向传播一起使用。第三个问题是神经网络通常使用基于梯度的优化方法(例如反向传播)进行训练。但是许多现实世界系统都有离散值函数(DVF),这些函数不允许基于梯度的优化。一个例子是航天器上常见的开关推进器。此处开发了一种新技术,现在扩展了反向传播学习以用于DVF。第四个问题是自适应速度通常是神经网络控制系统实施中的限制因素。利用上述新的贡献,该问题在研究中得到了强有力的解决。

著录项

  • 作者

    Wilson Edward;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号