首页> 外文OA文献 >On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
【2h】

On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

机译:Hermitian正定矩阵的自适应加权多项式预处理

摘要

The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
机译:通常将求解Hermitian正定线性系统的共轭梯度算法与预处理结合使用,以加快收敛速度​​。近年来,由于该方法在现代建筑上的吸引人的特性,多项式预处理已经复兴。选择预处理多项式的标准技术仅基于极限特征值的界限。这里提出了一种不同的方法,其目的是使预处理器适应系数矩阵的特征值分布。该技术基于以下观察:仅经过Lanczos过程的几步即可得出特征值分布的良好估计。然后,此信息将用于构造适合切比雪夫逼近问题的权重函数。该问题的解决方案产生了多项式前置条件。特别是,我们调查了Bernstein-Szego权重的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号