首页> 外文期刊>Journal of Computational Mathematics >A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES
【24h】

A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES

机译:非埃尔米特正定矩阵的位移分解预处理器

获取原文
获取原文并翻译 | 示例

摘要

A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.
机译:介绍了移位分裂的概念,并提出了移位分裂迭代方案和移位分裂前置条件,以解决系数矩阵为病态非Hermitian正定矩阵的线性方程组的大稀疏系统。深入讨论了移位分裂迭代方法的收敛性和移位预处理矩阵的特征值分布,并详细研究了移位的最佳选择。数值计算表明,移位分解预处理器可以导出精确,鲁棒和有效的预处理Krylov子空间迭代方法,用于求解大型稀疏非Hermitian正定线性方程组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号