首页> 外文期刊>Applied numerical mathematics >Inexact block SSOR-like preconditioners for non-Hermitian positive definite linear systems of strong Hermitian parts
【24h】

Inexact block SSOR-like preconditioners for non-Hermitian positive definite linear systems of strong Hermitian parts

机译:不精确的块SSOR样预处理器,适用于强壁图零件的非封闭师正面线性系统

获取原文
获取原文并翻译 | 示例

摘要

In this work, a class of inexact block SSOR-like preconditioners are proposed for the non-Hermitian positive definite linear system whose coefficient matrix is of a blockwise form. The novel preconditioners are based on the SSOR-like iteration method proposed by Bai (Numer. Linear Algebra Appl. 23, 37-60, 2016), but each of the diagonal blocks in the SSOR-like method is replaced by an approximation matrix which is easier to deal with. The estimated bounds for eigenvalues of the new preconditioned matrix, as well as the convergence property about the corresponding iteration method, are discussed. Finally, numerical experiments arise from the discretization of two-dimensional fractional diffusion equation and two-dimensional linear integro-differential equation are presented to confirm the theoretical analyses and illustrate the efficiency of the new preconditioners.
机译:在这项工作中,针对非封闭矩阵正定线性系统提出了一类不精确的块SSOR样预处理器,其系数矩阵是块形式的。新颖的预处理器基于BAI提出的类似SSOR的迭代方法(数值代数。线性代数。23,37-60,2016),但是SSOR样方法中的每个对角线块被近似矩阵替换更容易处理。讨论了新的预处理矩阵的特征值的估计范围,以及关于相应迭代方法的收敛性。最后,从二维分数扩散方程的离散化出现的数值实验提出,提出了二维线性积分 - 微分方程以确认理论分析并说明新的预处理器的效率。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号