首页> 外文OA文献 >Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation
【2h】

Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation

机译:非Hermitian正定线性系统解的预处理HSS方法及其在离散对流扩散方程中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the role of preconditioning strategies recently developedudfor coercive problems in connection with a two-step iterative method,udbased on the Hermitian skew-Hermitian splitting (HSS) of theudcoefficient matrix, proposed by Bai, Golub and Ng for the solutionudof nonsymmetric linear systems whose real part is coercive.udAs a model problem we consider Finite Differences (FD) matrix sequencesud${A_n(a,p)}_n$ discretizing the elliptic (convection-diffusion)udproblemud%udegin{equation}udlabel{eq:pde-abs}udleft{udegin{array}{l}ud%A_{a,p} u equivud-abla^T[a(x)abla u(x)]+sum_{j=1}^d {partialudover partial x_j}(p(x)u(x)) =f(x),quad quadudxin Omega, ud uddisplaystyleud{m Dirichlet BC},udend{array}udight.udend{equation}udwith $Omega$ being a plurirectangle of ${f R}^d$ with $a(x)$udbeing a uniformly positive function and $p(x)$ denoting theudReynolds function: here for plurirectangle we mean a connectedudunion of rectangles in $d$ dimensions with edges parallel to the axes.udMore precisely, in connection with preconditionedudHSS/GMRES like methods, we consider the preconditioning sequenceud${P_n(a)}_n$, $P_n(a):= D_n^{1/2}(a)A_n(1,0) D_n^{1/2}(a)$udwhere $ D_n(a)$ is the suitably scaled main diagonal ofud$A_n(a,0)$. If $a(x)$ is positive and regular enough, then theudpreconditioned sequence shows a strong clustering at unity so thatudthe sequence ${P_n(a)}_n$ turns out to be a superlinearudpreconditioning sequence for ${A_n(a,0)}_n$ where $A_n(a,0)$udrepresents a good approximation of ${m Re}(A_n(a,p))$ namely theudreal part of $A_n(a,p)$.ududThe computational interest is due to the fact that the preconditioned HSSudmethod has a convergence behavior depending on the spectral propertiesudof ${P_n^{-1}(a){m Re}(A_n(a,p))}_npproxud{P_n^{-1}(a)A_n(a,0)}_n$: therefore the solution of a linearudsystem with coefficient matrix $A_n(a,p)$ is reduced to computations involvinguddiagonals and to the use of fast Poisson solvers for ${A_n(1,0)}_n$.ududSome numerical experimentations confirm the optimality of the discussedudproposal and its superiority with respect to existing techniques.
机译:我们基于两步迭代方法研究了最近开发的 ud强制问题的预处理策略 ud的作用,该迭代基于ud系数矩阵的Hermitian skew-Hermitian分裂(HSS),由Bai,Golub和Ng提出解其实部为矫顽力的非对称线性系统的ud。 ud作为模型问题,我们考虑有限差分(FD)矩阵序列 ud $ {A_n(a,p)} _ n $离散化椭圆(对流扩散) udproblem ud% ud begin {equation} ud label {eq:pde-abs} ud left { ud begin {array} {l} ud%A_ {a,p} u equiv ud- nabla ^ T [a(x) nabla u(x)] + sum_ {j = 1} ^ d { partial ud over partial x_j}(p(x)u(x)) = f(x), quad quad udx in Omega, ud ud displaystyle ud { rm Dirichlet BC}, ud end {array} ud right。 ud end {equation} ud,其中$ Omega $是$ { bf R} ^ d $的多角形,而$ a(x)$ ud是一致的正函数,而$ p(x)$表示 udReynolds函数:在这里,对于plurirectangle,我们的意思是矩形的连接 ununion ud更精确地讲,结合预处理 udHSS / GMRES之类的方法,我们考虑预处理序列 ud $ {P_n(a)} _ n $,$ P_n(a ):= D_n ^ {1/2}(a)A_n(1,0)D_n ^ {1/2}(a)$ ud其中$ D_n(a)$是 ud $ A_n( a,0)$。如果$ a(x)$是正数且足够规则,则 udpre条件序列显示出一个很强的聚类性,因此 udthe序列$ {P_n(a)} _ n $证明是一个超线性 udprecondition序列$ {A_n(a,0)} _ n $其中$ A_n(a,0)$ ud表示$ { rm Re}(A_n(a,p))$的近似值,即$的 udreal部分A_n(a,p)$。 ud ud计算的兴趣是由于以下事实:预处理的HSS udmethod具有取决于光谱属性的收敛行为 udof $ {P_n ^ {-1}(a){ rm Re}(A_n(a,p))} _ n approx ud {P_n ^ {-1}(a)A_n(a,0)} _ n $:因此,具有系数的线性 udsystem的解矩阵$ A_n(a,p)$简化为涉及 uddiagonals的计算,并简化为$ {A_n(1,0)} _ n $使用快速泊松解算器。 ud ud一些数值实验证实了讨论了 udproposal及其相对于现有技术的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号