首页> 外文OA文献 >人工ポテンシャル場と特徴抽出法に基づく屋内環境における移動ロボットの経路計画
【2h】

人工ポテンシャル場と特徴抽出法に基づく屋内環境における移動ロボットの経路計画

机译:基于人工势场和特征提取方法的室内环境下移动机器人路径规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile robots are widely used in many applications in industrial fields as well as in academic and research fields. The robot path planning problem is a key problem in making truly autonomous robots. It is one of the most important aspects in mobile robot research and plays a major role in their applications but is a complex problem. The role of path planning of mobile robot can be described as finding a collision free path in a working environmentenriched with obstacles from a specified starting point to a desired destination position called the goal. Additional characteristic of path planning in known environments is to satisfy some certain optimization criteria. Most of the traditional path planning approaches such as visibility graphs, cell decomposition, voronoi diagram, etc. are designed and functioning well in static known environments. However the real environments are consisting of both the stationary and moving obstacles. Artificial potential field based methods can be applicable for both the static and dynamic environments as well as for the known or unknownenvironments. Because of the analytical complexity of the dynamic environments, researchon path planning in dynamic environments is limited but there are hundreds of research workhave been reported on path planning in static known environments.Because of the mathematical simplicity, easy implementation and real time applicability ofartificial potential field, it has become popular in robot path planning. However, the potential field based path planning shows some inherit shortcomings such as dead-lock. Recently, in the field mobile robotics, some different techniques have been proposed to overcome the dead-lock issue associated with the artificial potential field based path planning. Most of these research work targeted only a specified situation where the dead-lock can happen.In this research, we proposed a method for avoiding robot from dead-lock caused in differentsituations of mobile robot path planning using artificial potential field. In the proposedmethod we have introduced a new repulsive force component which is depended on therobot’s heading direction. The proposed method is evaluated for different conditions whichcreate dead-lock for traditional artificial potential field method. The simulations of theproposed approach have indicated that it has a capability of avoiding dead-locking associatedwith the traditional method, and is simpler and easier to implement. However in realimplementation it is required to extract the geometric features of the environment such aswalls and corners for our consideration in structured environments. Consequently, we havediscussed a segmentation and feature extraction adaptive algorithm for structuredenvironments. In this study, several adaptive techniques proposed in literature forsegmentation of laser range data have been implemented and tested in different environmentsto compare the performances of them with the proposed technique. The experimental resultshave shown that the proposed method is superior to other adaptive techniques. Furtherdiscussion is continued to analyze the implementation issues of the artificial potential field approach in geometrical structured environments. The segmented features of the walls are used to generate the potential force for robot navigation. These segmented features arematched with the pre-observed features to extend or merge them together to generate a mapof the environment and this map is used in potential force generation process. Combining thesegmentation and representation of geometrical obstacles for artificial potential fieldgeneration in robot path planning, simulation experiments were done and performances arecompared for the traditional and the proposed approach.Based on the simulation results from various case studies, we have concluded that theproposed artificial potential field method for mobile robot path planning is able to solve the dead-lock problems that are with traditional method. The segmentation and feature extraction algorithm proposed in this thesis has shown better performances than the existing methods by experimental results. Geometrical representation of the structured environment is used to implement the artificial potential field based path planning on the robot and implementation barriers are discussed.
机译:移动机器人广泛用于工业领域以及学术和研究领域的许多应用中。机器人路径规划问题是制造真正的自主机器人的关键问题。它是移动机器人研究中最重要的方面之一,在其应用中起着主要作用,但是这是一个复杂的问题。移动机器人路径规划的作用可以描述为在从指定的起点到称为目标的目标位置的,充满障碍的工作环境中找到无碰撞的路径。已知环境中路径规划的其他特征是要满足某些特定的优化标准。大多数传统的路径规划方法,例如可见性图,单元分解,伏洛诺伊图等,都是在静态已知环境中设计并运行良好的。但是,实际环境既包括固定障碍物,也包括移动障碍物。基于人工势场的方法可适用于静态和动态环境以及已知或未知环境。由于动态环境的分析复杂性,动态环境中路径规划的研究受到限制,但已有数百篇关于静态已知环境中路径规划的研究工作的报道。由于数学上的简单性,易于实现和人工势场的实时适用性,它已经在机器人路径规划中变得很流行。但是,基于潜在字段的路径规划显示出一些继承性缺陷,例如死锁。近来,在现场移动机器人中,已经提出了一些不同的技术来克服与基于人工势场的路径规划相关的死锁问题。这些研究工作大多只针对可能发生死锁的特定情况。在本研究中,我们提出了一种方法,该方法利用人工势场来避免机器人在移动机器人路径规划的不同情况下造成的死锁。在提议的方法中,我们引入了一种新的排斥力分量,该分量取决于机器人的前进方向。对提出的方法在不同条件下进行了评估,这些条件会导致传统人工势场方法产生死锁。仿真结果表明,该方法具有避免传统方法死锁的能力,并且更加简单易行。但是,在实现过程中,需要提取环境的几何特征(例如墙和角),以供我们在结构化环境中考虑。因此,我们讨论了一种用于结构环境的分割和特征提取自适应算法。在这项研究中,已经实现并在不同环境中测试了分段激光距离数据的文献中提出的几种自适应技术,以将其性能与所提出的技术进行比较。实验结果表明,该方法优于其他自适应技术。继续进行讨论以分析几何结构化环境中人工势场方法的实现问题。墙壁的分段特征用于生成机器人导航的潜在力。这些分割的特征与预先观察到的特征相匹配,以将其扩展或合并在一起以生成环境图,并且该图用于潜在的力生成过程。结合了几何障碍物的分解和表示,对机器人路径规划中的人工势场进行了仿真实验,并比较了传统方法和拟议方法的性能。基于各种案例研究的仿真结果,我们得出了建议的人工势场方法移动机器人的路径规划能够解决传统方法中的死锁问题。实验结果表明,本文提出的分割和特征提取算法具有比现有方法更好的性能。结构化环境的几何表示用于在机器人上实现基于人工势场的路径规划,并讨论了实现障碍。

著录项

  • 作者

    W.M.M. Tharindu Weerakoon;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号