首页> 外文OA文献 >An Adaptive Unscented Particle Filter Algorithm through Relative Entropy for Mobile Robot Self-Localization
【2h】

An Adaptive Unscented Particle Filter Algorithm through Relative Entropy for Mobile Robot Self-Localization

机译:通过相对熵进行自适应无编号粒子滤波算法,用于移动机器人自定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-localization is a basic skill for mobile robots in the dynamic environments. It is usually modeled as a state estimation problem for nonlinear system with non-Gaussian noise and needs the real-time processing. Unscented particle filter (UPF) can handle the state estimation problem for nonlinear system with non-Gaussian noise; however the computation of UPF is veryhigh. In order to reduce the computation cost of UPF and meanwhile maintain the accuracy, we propose an adaptive unscented particle filter (AUPF) algorithm through relative entropy. AUPF can adaptively adjust the number of particles during filtering to reduce the necessary computation and hence improve the real-time capability of UPF. In AUPF, the relative entropy is used to measure the distance between the empirical distribution and the true posterior distribution. The least number of particles for the next step is then decided according to the relative entropy. In order to offset the difference between the proposal distribution, and the true distribution the least number is adjusted thereafter. The ideal performance of AUPF in real robot self-localization is demonstrated.
机译:自定位是动态环境中移动机器人的基本技能。它通常被建模为具有非高斯噪声的非线性系统的状态估计问题,并且需要实时处理。 Unscented粒子滤波器(UPF)可以处理具有非高斯噪声的非线性系统的状态估计问题;然而,UPF的计算非常高。为了降低UPF的计算成本,同时保持准确性,我们通过相对熵提出了一种自适应无编滤波器(AUPF)算法。 AUPF可以在过滤期间自适应地调整粒子的数量以减少必要的计算,从而提高UPF的实时能力。在AUPF中,相对熵用于测量经验分布与真正后分布之间的距离。然后根据相对熵确定下一步骤的最少数量的颗粒。为了抵消提案分布之间的差异,此后调整真正的分布最小数量。证明了Real机器人自定位的AUPF的理想性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号