首页> 外文期刊>Control Systems Technology, IEEE Transactions on >An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots
【24h】

An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots

机译:在线估计自动移动机器人锂离子电池模型参数和荷电状态的自适应无味卡尔曼滤波方法

获取原文
获取原文并翻译 | 示例

摘要

In this brief, to get a more accurate and robust state of charge (SoC) estimation, the lithium-ion battery model parameters are identified using an adaptive unscented Kalman filtering method, and based on the updated model, the battery SoC is estimated consequently. An adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the unscented Kalman filter (UKF) context. The effectiveness of the proposed method is evaluated through experiments under different power duties in the laboratory environment. The obtained results are compared with that of the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms. The comparison shows that the proposed method provides better accuracy both in battery model parameters estimation and the battery SoC estimation.
机译:在此简要介绍中,为了获得更准确,更可靠的充电状态(SoC)估计,使用自适应无味卡尔曼滤波方法来识别锂离子电池模型参数,然后基于更新后的模型对电池SoC进行估计。使用无味卡尔曼滤波器(UKF)上下文中的协方差匹配技术,可以对估计过程中的噪声协方差进行自适应调整。通过在实验室环境中不同功率下的实验来评估所提出方法的有效性。将获得的结果与自适应扩展卡尔曼滤波器,扩展卡尔曼滤波器和基于无味卡尔曼滤波器的算法的结果进行比较。比较表明,该方法在电池模型参数估计和电池SoC估计方面均提供了更好的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号