首页> 外文期刊>Mathematical Problems in Engineering >An Adaptive Unscented Particle Filter Algorithm through Relative Entropy for Mobile Robot Self-Localization
【24h】

An Adaptive Unscented Particle Filter Algorithm through Relative Entropy for Mobile Robot Self-Localization

机译:相对熵的自适应无味粒子滤波算法在移动机器人自定位中的应用

获取原文
获取原文并翻译 | 示例

摘要

Self-localization is a basic skill for mobile robots in the dynamic environments. It is usually modeled as a state estimation problem for nonlinear system with non-Gaussian noise and needs the real-time processing. Unscented particle filter (UPF) can handle the state estimation problem for nonlinear system with non-Gaussian noise; however the computation of UPF is very high. In order to reduce the computation cost of UPF and meanwhile maintain the accuracy, we propose an adaptive unscented particle filter (AUPF) algorithm through relative entropy. AUPF can adaptively adjust the number of particles during filtering to reduce the necessary computation and hence improve the real-time capability of UPF. In AUPF, the relative entropy is used to measure the distance between the empirical distribution and the true posterior distribution. The least number of particles for the next step is then decided according to the relative entropy. In order to offset the difference between the proposal distribution, and the true distribution the least number is adjusted thereafter. The ideal performance of AUPF in real robot self-localization is demonstrated.
机译:自我定位是动态环境中移动机器人的一项基本技能。通常将其建模为具有非高斯噪声的非线性系统的状态估计问题,并且需要实时处理。无味粒子滤波器(UPF)可以处理具有非高斯噪声的非线性系统的状态估计问题;但是,UPF的计算量很高。为了降低UPF的计算成本并保持精度,我们通过相对熵提出了一种自适应无味粒子滤波(AUPF)算法。 AUPF可以在过滤过程中自适应地调整粒子数,以减少必要的计算,从而提高UPF的实时能力。在AUPF中,相对熵用于测量经验分布与真实后验分布之间的距离。然后根据相对熵确定用于下一步的最少数量的粒子。为了抵消提案分配与真实分配之间的差异,此后将调整最小数量。展示了AUPF在真实机器人自我定位中的理想性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第10期|567373.1-567373.9|共9页
  • 作者单位

    School of Information Science and Engineering, Central South University, Changsha 410075, China;

    School of Information Science and Engineering, Central South University, Changsha 410075, China;

    School of Information Science and Engineering, Central South University, Changsha 410075, China;

    School of Information Science and Engineering, Central South University, Changsha 410075, China;

    School of Information Science and Engineering, Central South University, Changsha 410075, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号