首页> 外文OA文献 >A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
【2h】

A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization

机译:基于多目标粒子群优化的移动机器人的分层全局路径规划方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel hierarchical global path planning approach for mobile robots in a cluttered environment is proposed. This approach has a three-level structure to obtain a feasible, safe and optimal path. In the first level, the triangular decomposition method is used to quickly establish a geometric free configuration space of the robot. In the second level, Dijkstra's algorithm is applied to find a collision-free path used as input reference for the next level. Lastly, a proposed particle swarm optimization called constrained multi-objective particle swarm optimization with an accelerated update methodology based on Pareto dominance principle is employed to generate the global optimal path with the focus on minimizing the path length and maximizing the path smoothness. The contribution of this work consists in: (i) The development of a novel optimal hierarchical global path planning approach for mobile robots moving in a cluttered environment; (ii) The development of proposed particle swarm optimization with an accelerated update methodology based on Pareto dominance principle to solve robot path planning problems; (iii) Providing optimal global robot paths in terms of the path length and the path smoothness taking into account the physical robot system limitations with computational efficiency. Simulation results in various types of environments are conducted in order to illustrate the superiority of the hierarchical approach. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种新颖的移动机器人在杂乱环境中的分层全局路径规划方法。该方法具有三级结构,可获得可行,安全和最佳的路径。在第一级,三角形分解方法用于快速建立机器人的几何自由配置空间。在第二级,Dijkstra的算法应用于查找用作下一个级别的输入参考的自由碰撞路径。最后,采用了基于Pareto优势原理的加速更新方法的所提出的粒子群优化优化,以产生全局最优路径,重点是最小化路径长度并最大化路径平滑度。这项工作的贡献包括:(i)开发一种新颖的最佳分层全球路径规划方法,用于移动机器人在杂乱的环境中移动; (ii)基于Pareto优势原理的加速更新方法的开发,以解决机器人路径规划问题; (iii)在路径长度和路径平滑方面提供最佳的全球机器人路径,以考虑到计算效率的物理机器人系统限制。进行各种类型环境的仿真结果,以说明等级方法的优势。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号