首页> 外文OA文献 >Machine learning for social multiparty human-robot interaction
【2h】

Machine learning for social multiparty human-robot interaction

机译:用于社交多方人机交互的机器学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a variety of machine-learning techniques that are being applied to social multiuser human--robot interaction using a robot bartender in our scenario. We first present a data-driven approach to social state recognition based on supervised learning. We then describe an approach to social skills execution—that is, action selection for generating socially appropriate robot behavior—which is based on reinforcement learning, using a data-driven simulation of multiple users to train execution policies for social skills. Next, we describe how these components for social state recognition and skills execution have been integrated into an end-to-end robot bartender system, and we discuss the results of a user evaluation. Finally, we present an alternative unsupervised learning framework that combines social state recognition and social skills execution based on hierarchical Dirichlet processes and an infinite POMDP interaction manager. The models make use of data from both human--human interactions collected in a number of German bars and human--robot interactions recorded in the evaluation of an initial version of the system.
机译:我们描述了在我们的场景中使用机器人调酒师应用于社交多用户人机交互的各种机器学习技术。我们首先提出一种基于监督学习的数据驱动的社会状态识别方法。然后,我们描述一种执行社交技能的方法,即基于社交的强化学习,它使用多个用户的数据驱动模拟来训练社交技能的执行策略,该动作选择用于生成适合社交的机器人行为。接下来,我们描述如何将这些用于社交状态识别和技能执行的组件集成到端到端机器人调酒师系统中,并讨论用户评估的结果。最后,我们提出了一个替代的无监督学习框架,该框架结合了基于分层Dirichlet流程和无限POMDP交互管理器的社会状态识别和社会技能执行。这些模型利用了从许多德国酒吧收集的人与人之间的交互数据以及在系统初始版本的评估中记录的人与机器人之间的交互数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号